利用斐波那契数列的生成函数求通项

\left \{ a_{n} \right \}为斐波那契(Fibonacci)数列:

        a_{0}= a_{1}=1,a_{n}=a_{n-1}+a_{n-2},\forall n\geq 2

定义

        f(x)=a_{0}+a_{1}x+a_{2}x^{2}+\cdots +a_{n}x^{n}+\cdots

\left \{ a_{n} \right \}的生成函数

现在我们要根据\left \{ a_{n} \right \}的性质求出f(x),再利用f(x)的性质解出\left \{ a_{n} \right \}

我们试图利用\left \{ a_{n} \right \}的递推公式构造出关于f(x)的方程

不难想到

                xf(x)=a_{0}x+a_{1}x^{2}+\cdots +a_{n-1}x^{n}+\cdots             (1)

                x^{2}f(x)=a_{0}x^{2}+a_{1}x^{3}+\cdots +a_{n-2}x^{n}+\cdots          (2)

由(1)+(2)得到

                xf(x)+x^{2}f(x)=x+f(x)-1-x

由此解得

                f(x)=\frac{x}{1-x-x^{2}}

考虑以下式子

                \frac{R}{1-rx}+\frac{S}{1-sx}=\frac{(R+S)-(rS+Sr)x}{1-(s+r)x+rsx^2}

f(x)对比可知

                R=\frac{1}{r-s}S=\frac{-1}{r-s}   

从而

                f(x)=\frac{1}{r-s}\left ( \frac{1}{1-rx}-\frac{1}{1-sx} \right )

展开得

                f(x)=0+\frac{r-s}{r-s}x+\frac{r^{2}-s^{2}}{r-s}x^2+\frac{r^{3}-s^{3}}{r-s}x^3+\cdots

于是

                a_{n}=\frac{r^{n}-s^{n}}{r-s}

我们只需要解

                x^2-x-1=0

可得

        r=\frac{1+\sqrt{5}}{2},s=\frac{1-\sqrt{5}}{2}

因此,斐波那契的通项公式为

        a_{n}=\frac{1}{\sqrt{5}}((\frac{1+\sqrt{5}}{2})^{n}-(\frac{1-\sqrt{5}}{2})^{n})            

                

 

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

只微

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值