斐波那契生成函数

斐波那契数列的递推公式是这样的:fib[i]=fib[i-1]+fib[i-2],f[0]=0,f[1]=1;

我们可以把他写成一个多项式的形式:\sum _{i\geq 0}fib(x)=0+x+x^2+2x^3+...fib[i]x^i

这样fib多项式的第i项的系数就是fib数列第i项的值,我们带回递推公式

\sum _{i\geq 0}fib(i)=0+i+\sum _{i\geq 2}(fib(i-1)+fib(i-2))

\sum _{i\geq 0}fib(i)=0+i+i\sum _{i\geq 0}fib(i)+i^2\sum _{i\geq 0}fib(i)

\sum _{i\geq 0}fib(i)=\frac{i}{1-i-i^2}

根据求根公式x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

\sum _{i\geq 0}fib(i)=\frac{i}{(1-\frac{1+\sqrt{5}}{2}i)(1-\frac{1-\sqrt{5}}{2}i)}

根据裂项法

\sum _{i\geq 0}fib(i)=\frac{i}{(1-\frac{1+\sqrt{5}}{2}i)(1-\frac{1-\sqrt{5}}{2}i)}=\frac{1}{\sqrt{5}}(\frac{1}{1-\frac{1+\sqrt{5}}{2}i}-\frac{1}{1-\frac{1-\sqrt{5}}{2}i})

根据1+(wx)+(wx)^2+(wx)^3+......(wx)^n=\frac{1}{1-wx}(收敛不收敛这里我们不考虑)

\frac{1}{\sqrt{5}}(\frac{1}{1-\frac{1+\sqrt{5}}{2}i}-\frac{1}{1-\frac{1-\sqrt{5}}{2}i})=\frac{1}{\sqrt{5}}((1+\frac{1+\sqrt{5}}{2}i+(\frac{1+\sqrt{5}}{2}i)^2+....(\frac{1+\sqrt{5}}{2}i)^n)-(1+\frac{1-\sqrt{5}}{2}i+(\frac{1-\sqrt{5}}{2}i)^2+....+(\frac{1-\sqrt{5}}{2}i)^n)

那么\sum _{i\geq 0}fib(i)的第i项系数就是\frac{1}{\sqrt{5}}((\frac{1+\sqrt{5}}{2})^i-(\frac{1-\sqrt{5}}{2})^i)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值