<div>
<p>
进制定义:是指在数字电路中以(2/8/10/16)为基数的计数系统,其计数内只有相应进制的数字或字母 如2进制里它的计数只有0,1
二进制:0-1组成 逢2进1 列如:101101
八进制: 0-7组成 逢8进1 列如:77
十进制:0-9组成 逢十进1 列如:88
十六进制:(0-9 and A-F)组成 逢16进1 列如:9527
</p>
</div>
常用的进制的转化
<div>
<p>
进制转化
2进制的转化位权的底数都为2
2转10:采用位置计数法,其位权是以 2 为底的幂,顺序从右到左,从 0 开 始计数。
例如二进制数 1011 = 1 * 23 + 0 * 22 + 1 * 21 + 1 * 20 = 11(十进制)
2转8:采用三合一法,即从二进制的小数点为分界点,向左(或向右)每三 位对应八进制的一位,不足三位的前面补 0,
例如:10110011 = (0)10 110 011 = 263 (同时在各个分割的三位数中 用位权法进行计算)
2转16::采用四合一法,即从二进制的小数点为分界点,向左(或向右)每 四位对应十六进制的一位,不足四位的前面补 0,
例如:10110011 = 1011 0011 = B3
8进制的转化位权的底数都为8
8转2::和二进制转八进制的方法相反,采用三位合一法,
例如:263 = 010 110 011(二进制)
8转10:八进制转十进制:和二进制转十进制的方法一样,采用位置计数法,其位权是以 8 为 底的幂,顺序从右到左,从 0 开始计数。
例如八进制数 26 = 2 * 81 + 6 * 80 = 22
8转16:八进制转十六进制:不能直接转换,需要先转成二进制,再将二进制转成十六进制
10进制转化的位权都为10
10转2: 整数采用“除 2 倒取余”,小数采用“乘 2 取整”。
例如十进制数 135 转换成二进制时,将 135 除以 2,得余数,直到不能整除,然后再将余数从下至上倒 取,结果为 10000111(二进制)
10转8:和转二进制的方法类似,整数采用“除 8 倒取余”,小数采用“乘 8 取整”。
例如十进制数 10 转换成二进制时,将 10 除以 8,得余数,直到不能整除,然后 再将余数从下至上倒取,结果为 12
10转16:思路和转二进制、八进制一样,十进制数 25 转换成十六进制时, 结果为 19
16进制转化的位权都为16
16转2::和二进制转十六进制的方法相反,采用四合一法,
例如:B3 = 1011 0011 = 10110011
16转8:不能直接转换,需要先转成二进制,再将二进制转成八进制
16转10:和二进制转十进制的方法一样,采用位置计数法,其位权是以 16 为底的幂,顺序从右到左,从 0 开始计数。
例如十六进制数 26 = 2 * 161 + 6 * 160 = 38
</p>
</div>
位权计算图解
2转10
2转8
2转16
🆗兄弟姐妹们接下来的以上图类推可以得到自己的计算结果 多练多算!!!
(注:上图转载于用户介意的话联系我删除)