奇异值 和 特征值 是线性代数中重要的概念,它们在矩阵的性质和应用中有着密切的联系,但也有显著的区别。以下是它们的详细对比、联系和求解方法。
1. 奇异值与特征值的区别
定义上的区别
-
特征值:特征值是与方阵 A 相关的一个标量,描述了矩阵的作用在某些特定方向上的伸缩比例。特征值 λ 满足:
其中,v是非零的特征向量。
-
奇异值:奇异值是矩阵 A 的一种更广泛的分解,适用于任意矩阵(方阵或非方矩阵)。如果 A 是一个 m×n 的矩阵,那么奇异值是非负实数 σ ,它们是矩阵
或
的非负平方根。奇异值来自奇异值分解 (SVD),表示为:
其中,U 和 V 是正交矩阵,Σ 是对角矩阵,包含了 A 的奇异值。
适用范围的区别
- 特征值:特征值仅适用于方阵,即 n×n 的矩阵。
- 奇异值:奇异值适用于任意矩阵,无论是否为方阵。
取值范围的区别
- 特征值:特征值可以是实数或复数,甚至可以是负数。
- 奇异值:奇异值总是非负实数,因为它们是矩阵
的特征值的平方根。
物理含义上的区别
- 特征值:特征值反映了矩阵在其特征向量方向上的伸缩变换,以及矩阵的稳定性等属性。
- 奇异值:奇异值反映了矩阵对输入向量在不同正交方向上拉伸或压缩的幅度,主要用于描述矩阵的范数和秩等性质。
2. 奇异值与特征值的联系
奇异值与特征值有着重要的联系,特别是通过对称矩阵或正交变换矩阵,可以从特征值推导出奇异值。
联系 1:奇异值是特征值的平方根
对于矩阵 A,其奇异值等于 或
的非负特征值的平方根。即:
其中, 是
或
的特征值,而
是矩阵 A 的奇异值。
联系 2:对称矩阵的奇异值和特征值相同
如果矩阵 A 是对称矩阵(即 ),那么它的奇异值就是它的特征值的绝对值。即:
联系 3:正交矩阵的奇异值
如果 A 是一个正交矩阵(即 ),那么它的奇异值全部是1。
3. 如何求解奇异值与特征值
求解特征值
特征值 λ 是通过解特征方程得到的。给定矩阵 A,我们要求解满足以下方程的 λ:
其中,I 是单位矩阵,det 是行列式。
求解特征值的步骤:
- 构造特征方程:将矩阵 A 代入
,并计算其行列式。
- 解特征方程:将特征方程
展开,得到关于 λ 的多项式。
- 求解多项式:解多项式方程得到特征值 λ 。
求解奇异值
奇异值通过奇异值分解 (SVD) 得到。奇异值分解的步骤如下:
步骤 1:构造矩阵
或 
给定一个矩阵 A(可以是非方阵),首先构造 或
,这两个矩阵都是对称的。
步骤 2:求
或
的特征值
接下来,求解 或
的特征值。这些特征值都是非负的,记为
。
步骤 3:计算奇异值
矩阵 A 的奇异值 是矩阵
或
的特征值的平方根:
步骤 4:构造奇异值分解
通过奇异值 以及求得的正交矩阵 U 和 V,可以得到矩阵的奇异值分解:
其中,Σ 是一个对角矩阵,对角线上是矩阵的奇异值 。
4. 特征值与奇异值的应用
特征值的应用
- 矩阵对角化:方阵 A 可以通过特征分解
进行对角化,其中
是对角矩阵,对角线元素是特征值。
- 稳定性分析:特征值常用于线性系统的稳定性分析。特征值的实部决定系统的收敛或发散。
- 动力系统:特征值和特征向量用于研究动力系统的解,例如线性常微分方程组的通解。
奇异值的应用
- 矩阵压缩:奇异值分解(SVD)用于矩阵压缩,例如在图像处理和数据降维中的应用。较小的奇异值可以被忽略,从而实现压缩。
- 数据分析:在主成分分析 (PCA) 中,奇异值分解被用于提取数据的主成分。
- 矩阵条件数:奇异值可以用于计算矩阵的条件数,条件数用于衡量矩阵是否接近奇异矩阵。
5. 例子:特征值与奇异值的计算
例子 1:特征值的计算
给定矩阵:
1.构造特征方程:
2.解特征方程:
所以特征值为 和
。
例子 2:奇异值的计算
给定矩阵:
1.构造 :
2.求 的特征值:
解得 。
3.计算奇异值:
因此,矩阵 A 的奇异值为 和
。