
论文阅读
文章平均质量分 93
勤劳的进取家
这个作者很懒,什么都没留下…
展开
-
论文阅读:LLMs and IoT: A Comprehensive Survey onLarge Language Models and the Internet of Things
物联网(IoT)的迅速普及催生了高度互联的系统,这些系统集成了各种各样的设备。随着联网物联网设备数量的持续增长,这些设备产生的海量数据在收集、管理、分析和利用方面带来了巨大挑战,尤其是在大规模部署中。传统的数据处理方法往往难以应对这些环境的复杂性和实时性需求,因此需要先进的方法来实现高效的数据处理和智能交互。最近,大语言模型(LLMs)已成为增强物联网系统中自然且上下文感知交互的强大工具。它们在处理和分析大型数据集方面的能力使其能够进行有意义的对话、改进数据解释并更好地理解上下文。原创 2025-05-29 21:33:12 · 511 阅读 · 0 评论 -
论文阅读:Self-Planning Code Generation with Large Language Models
尽管大型语言模型(LLMs)在代码生成方面展现出了令人瞩目的能力,但它们在处理人类提供的复杂意图时仍然困难重重。众所周知,人类通常会在实施之前通过规划来分解复杂问题并安排解决步骤。为此,我们将规划引入代码生成,以帮助模型理解复杂意图并降低解决问题的难度。本文提出了一种基于大型语言模型的自规划代码生成方法,该方法包括两个阶段,即规划阶段和实现阶段。具体来说,在规划阶段,LLM 通过少样本提示从意图中规划出简洁的解决步骤。随后,在实现阶段,模型在前述解决步骤的指导下逐步生成代码。原创 2025-05-26 15:37:49 · 1141 阅读 · 0 评论 -
论文阅读:PURPLE: Making a Large Language Model a Better SQL Writer
大语言模型(LLM)技术在自然语言到 SQL(NL2SQL)翻译中扮演着越来越重要的角色。通过大量语料训练的 LLM 具有强大的自然语言理解能力和基本的 SQL 生成能力,无需针对 NL2SQL 任务进行额外调优。现有的基于 LLM 的 NL2SQL 方法试图通过增强 LLM 对用户意图的理解来改进翻译。然而,LLM 有时会因缺乏组织复杂逻辑运算符组合的知识而无法生成合适的 SQL。原创 2025-05-25 20:48:15 · 957 阅读 · 0 评论 -
科研经验贴:AI领域的研究方向总结
由神经网络层(如卷积层、全连接层、Transformer 层)组成的架构,用于学习输入到输出的映射关系。: 用于训练、验证和测试模型的样本集合,通常包含输入特征(如图像、文本)和对应标签(如类别、回归值)。: 用于评估模型性能的量化指标,反映模型在特定任务上的效果(不同于损失函数,不一定可微)。: 衡量模型预测值与真实值之间的差距,作为训练过程中优化的目标函数。: 在特定数据集上的。原创 2025-05-23 16:48:20 · 586 阅读 · 0 评论 -
论文阅读:Next-Generation Database Interfaces:A Survey of LLM-based Text-to-SQL
由于用户问题理解、数据库模式解析和 SQL 生成的复杂性,从用户自然语言问题生成准确 SQL(Text-to-SQL)仍是一项长期挑战。传统的 Text-to-SQL 系统结合人工设计和深度神经网络已取得显著进展,随后预训练语言模型(PLM)在该任务上也实现了有前景的结果。然而,随着现代数据库和用户问题日益复杂,参数规模有限的 PLM 常生成错误 SQL,这需要更精细的定制化优化方法,从而限制了基于 PLM 系统的应用。原创 2025-05-21 22:25:03 · 1369 阅读 · 1 评论 -
论文阅读:Self-Collaboration Code Generation via ChatGPT
尽管大型语言模型(LLMs)在代码生成能力方面表现出色,但在处理复杂任务时仍存在挑战。在现实软件开发中,人类通常通过团队协作来应对复杂任务,这种策略能有效控制开发复杂度并提升软件质量。受此启发,本文提出一种基于 LLMs(以 ChatGPT 为例)的自协作代码生成框架。具体而言,通过角色指令:(1)多个 LLM 代理扮演不同的 “专家” 角色,每个角色负责复杂任务中的特定子任务;(2)指定协作和交互方式,使不同角色形成虚拟团队以协同完成工作,最终实现无需人工干预的代码生成任务。原创 2025-05-16 22:27:38 · 1147 阅读 · 0 评论