1. 范数 (Norm)
定义:范数是定义在向量空间中的一种函数,用于测量向量的大小或长度。对于向量 x,范数表示为 ∥x∥。
性质:
- 非负性:∥x∥≥0,且 ∥x∥=0 当且仅当 x=0。
- 齐次性:∥αx∥=∣α∣∥x∥ 对任意标量 α成立。
- 三角不等式:∥x+y∥≤∥x∥+∥y∥。
分类:属于向量范数。
2. p 范数 (p-Norm)
定义:对于向量 ,p 范数定义为:
常用的 p 值包括 1、2 和 ∞。
性质:
- p≥1:满足范数的所有性质。
- p=1:曼哈顿范数(L1 范数),表示为
。
- p=2:欧几里得范数(L2 范数),表示为
。
- p→∞:最大范数,表示为
。
分类:属于向量范数。
3. 椭圆范数 (Elliptic Norm)
定义:椭圆范数是定义在向量空间中的一种范数,通常与椭圆体的几何性质相关。例如,在某些变换下形成椭圆形的单位球。
性质:
- 特定形式:通常表示为
,其中 A 是正定矩阵。
- 几何意义:椭圆范数的单位球在几何上表示为一个椭圆。
分类:属于向量范数。
4.
范数 (Matrix 1-Norm)
定义:对于矩阵 A, 范数定义为矩阵所有的元素的绝对值之和:
性质:
- 非负性:
。
- 齐次性:
。
- 三角不等式:
。
分类:属于矩阵范数。
5. Frobenius 范数 (F-Norm)
定义:Frobenius 范数用于矩阵,定义为:
其中 是矩阵 A 的元素,tr 表示迹(对角元素之和)。
性质:具有酉不变性。
分类:属于矩阵范数。
6.
范数 (Matrix Infinity-Norm)
定义:对于方阵 A, 范数无穷范数定义为各行元素绝对值之和的最大值:
性质:
- 非负性和齐次性与范数相同。
- 满足三角不等式。
- 兼容性:与向量范数的性质类似,满足三角不等式。
分类:属于矩阵范数。
7. 矩阵 1 范数 (Matrix 1-Norm)
定义:矩阵 A 的 1 范数是所有列元素绝对值和的最大值:
这里 是矩阵 A 的元素。
性质:
- 非负性:
。
- 齐次性:对于标量 α ,有
。
- 三角不等式:
。
- 与向量范数的关系:矩阵 1 范数等于对应的向量 1 范数的最大值。
- 矩阵 1 范数:最大列和,关注矩阵的列结构。
分类:属于矩阵范数。
8. 矩阵 2 范数 (Matrix 2-Norm)
定义:矩阵 A 的 2 范数(也称为谱范数)是其奇异值的最大值,或者可以通过以下方式定义:
性质:
- 非负性:
。
- 齐次性:对于标量 α,有
。
- 三角不等式:
。
- 酉不变性
- 等于最大的奇异值:
等于矩阵 A 的最大奇异值。
- 矩阵 2 范数:最大奇异值,关注矩阵对向量的拉伸效应。
分类:属于矩阵范数。
9. 矩阵无穷范数 (Matrix Infinity-Norm)
定义:矩阵 A 的无穷范数是所有行元素绝对值和的最大值:
性质:
- 非负性:
。
- 齐次性:对于标量 α,有
。
- 三角不等式:
。
- 与向量范数的关系:矩阵无穷范数等于对应的向量无穷范数的最大值。
- 矩阵无穷范数:最大行和,关注矩阵的行结构。
分类:属于矩阵范数。
10. 矩阵M范数 (Max Norm)
定义:矩阵 A 的M范数是矩阵中绝对值最大的元素,定义为:
性质:
- 非负性:
。
- 齐次性:对于标量 α ,有
。
- 三角不等式:
。
分类:属于矩阵范数。
11. 矩阵G范数 (Geometric Mean Norm)
定义:矩阵的几何平均范数是通过矩阵中元素的几何平均值来定义,通常定义为:
其中 是矩阵 A 的元素,m 是行数,n 是列数。
性质:
- 非负性:
,且仅当所有元素为零时为零。
- 齐次性:对于标量 α,有
。
- 三角不等式:
。
分类:属于矩阵范数。