区别:p 范数、椭圆范数、m1​ 范数、Frobenius 范数、 m∞ 范数、矩阵1范数、矩阵2范数、 矩阵∞ 范数、矩阵M范数、矩阵G范数

1. 范数 (Norm)

定义:范数是定义在向量空间中的一种函数,用于测量向量的大小或长度。对于向量 x,范数表示为 ∥x∥。

性质

  • 非负性:∥x∥≥0,且 ∥x∥=0 当且仅当 x=0。
  • 齐次性:∥αx∥=∣α∣∥x∥ 对任意标量 α成立。
  • 三角不等式:∥x+y∥≤∥x∥+∥y∥。

分类:属于向量范数。

2. p 范数 (p-Norm)

定义:对于向量 x = (x_1, x_2, \ldots, x_n),p 范数定义为:

\|x\|_p = \left( \sum_{i=1}^{n} |x_i|^p \right)^{1/p}

常用的 p 值包括 1、2 和 ∞。

性质

  • p≥1:满足范数的所有性质。
  • p=1:曼哈顿范数(L1 范数),表示为 \|x\|_1 = \sum |x_i|
  • p=2:欧几里得范数(L2 范数),表示为 \|x\|_2 = \sqrt{\sum x_i^2}​​。
  • p→∞:最大范数,表示为 \|x\|_\infty = \max |x_i|

分类:属于向量范数。

3. 椭圆范数 (Elliptic Norm)

定义:椭圆范数是定义在向量空间中的一种范数,通常与椭圆体的几何性质相关。例如,在某些变换下形成椭圆形的单位球。

性质

  • 特定形式:通常表示为 \|x\| = \sqrt{x^T A x}​,其中 A 是正定矩阵。
  • 几何意义:椭圆范数的单位球在几何上表示为一个椭圆。

分类:属于向量范数。

4.m_1 范数 (Matrix 1-Norm)

定义:对于矩阵 A,M_1 范数定义为矩阵所有的元素的绝对值之和:

\|A\|_{m_1} = \sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|

性质

  • 非负性:\|A\|_{M_1} \geq 0
  • 齐次性:\|\alpha A\|_{M_1} = |\alpha| \|A\|_{M_1}​​。
  • 三角不等式:\|A + B\|_{M_1} \leq \|A\|_{M_1} + \|B\|_{M_1}​​。

分类:属于矩阵范数。

5. Frobenius 范数 (F-Norm)

定义:Frobenius 范数用于矩阵,定义为:

\|A\|_F = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2} = \sqrt{\text{tr}(A^* A)}

其中 a_{ij} 是矩阵 A 的元素,tr 表示迹(对角元素之和)。

性质:具有酉不变性。

分类:属于矩阵范数。

6. m_\infty范数 (Matrix Infinity-Norm)

定义:对于方阵 A,m_\infty 范数无穷范数定义为各行元素绝对值之和的最大值:

\|A\|_\infty = \max_{1\le i\le m} \sum_{j=1}^n |a_{ij}|.

性质

  • 非负性和齐次性与范数相同。
  • 满足三角不等式。
  • 兼容性:与向量范数的性质类似,满足三角不等式。

分类:属于矩阵范数。

7. 矩阵 1 范数 (Matrix 1-Norm)

定义:矩阵 A 的 1 范数是所有列元素绝对值和的最大值:

\|A\|_1 = \max_{1 \leq j \leq n} \sum_{i=1}^{m} |a_{ij}|

这里 a_{ij} 是矩阵 A 的元素。

性质

  • 非负性\|A\|_1 \geq 0
  • 齐次性:对于标量 α ,有|\alpha A\|_1 = |\alpha| \|A\|_1​。
  • 三角不等式\|A + B\|_1 \leq \|A\|_1 + \|B\|_1
  • 与向量范数的关系:矩阵 1 范数等于对应的向量 1 范数的最大值。
  • 矩阵 1 范数:最大列和,关注矩阵的列结构。

分类:属于矩阵范数。

8. 矩阵 2 范数 (Matrix 2-Norm)

定义:矩阵 A 的 2 范数(也称为谱范数)是其奇异值的最大值,或者可以通过以下方式定义:

\|A\|_2 = \max_{\|x\|_2 = 1} \|Ax\|_2=max(\sigma_i )

性质

  • 非负性\|A\|_2 \geq 0
  • 齐次性:对于标量 α,有 |\alpha A\|_2 = |\alpha| \|A\|_2
  • 三角不等式\|A + B\|_2 \leq \|A\|_2 + \|B\|_2​。
  • 酉不变性
  • 等于最大的奇异值\|A\|_2 等于矩阵 A 的最大奇异值。
  • 矩阵 2 范数:最大奇异值,关注矩阵对向量的拉伸效应。

分类:属于矩阵范数。

9. 矩阵无穷范数 (Matrix Infinity-Norm)

定义:矩阵 A 的无穷范数是所有行元素绝对值和的最大值:

\|A\|_\infty = \max_{1 \leq i \leq m} \sum_{j=1}^{n} |a_{ij}|

性质

  • 非负性\|A\|_\infty \geq 0
  • 齐次性:对于标量 α,有 \|\alpha A\|_\infty = |\alpha| \|A\|_\infty​。
  • 三角不等式\|A + B\|_\infty \leq \|A\|_\infty + \|B\|_\infty
  • 与向量范数的关系:矩阵无穷范数等于对应的向量无穷范数的最大值。
  • 矩阵无穷范数:最大行和,关注矩阵的行结构。

分类:属于矩阵范数。

10. 矩阵M范数 (Max Norm)

定义:矩阵 A 的M范数是矩阵中绝对值最大的元素,定义为:

\|A\|_{\text{M}} = \max({ m, n} )max|a_{ij}|

性质

  • 非负性\|A\|_{\text{M}} \geq 0
  • 齐次性:对于标量 α ,有 \|\alpha A\|_{\text{M}} = |\alpha| \|A\|_{\text{M}}​。
  • 三角不等式\|A + B\|_{\text{M}} \leq \|A\|_{\text{M}} + \|B\|_{\text{M}}

分类:属于矩阵范数。

11. 矩阵G范数 (Geometric Mean Norm)

定义:矩阵的几何平均范数是通过矩阵中元素的几何平均值来定义,通常定义为:

\|A\|_{\text{G}} = \sqrt{mn}\max|a_{ij}|

其中 |a_{ij}|是矩阵 A 的元素,m 是行数,n 是列数。

性质

  • 非负性\|A\|_{\text{G}} \geq 0,且仅当所有元素为零时为零。
  • 齐次性:对于标量 α,有 \|\alpha A\|_{\text{G}} = |\alpha| \|A\|_{\text{G}}​。
  • 三角不等式\|A + B\|_{\text{G}} \leq \|A\|_{\text{G}} + \|B\|_{\text{G}}

分类:属于矩阵范数。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤劳的进取家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值