利用初等行变换求解矩阵的逆是一种非常实用的方法,通常称为 增广矩阵法 或 高斯-约当消元法。具体步骤是通过将矩阵 A 转化为单位矩阵 I,同时对单位矩阵进行相同的行变换,最终得到矩阵 A 的逆矩阵。
步骤概述
-
构造增广矩阵:将待求矩阵 A 和单位矩阵 I 增广在一起,形成 [A∣I]。
-
利用初等行变换将 A 化为单位矩阵 I:对增广矩阵 [A∣I] 的左半部分 A 进行初等行变换,最终将其化为单位矩阵 I。
-
右半部分即为逆矩阵:当左半部分变为 I 后,增广矩阵的右半部分将变成
。
注:初等行变换法求解矩阵的逆的本质是:
例:求矩阵 A 的逆矩阵
假设矩阵 A 为:
我们将通过初等行变换求解它的逆矩阵。
步骤 1: 构造增广矩阵
将矩阵 AA和单位矩阵 I 增广在一起:
步骤 2: 使用初等行变换将 A 化为单位矩阵
-
将第一行的第一个元素变为 1:将第 1 行除以 2:
-
将第 2 行的第一个元素变为 0:用第 2 行减去 5 倍的第 1 行:
-
将第二行的第二个元素变为 1:将第 2 行乘以 2:
-
将第一行的第二个元素变为 0:用第 1 行减去
倍的第 2 行:
现在,增广矩阵的左半部分已经成为单位矩阵 I,右半部分即为矩阵 A的逆矩阵:
步骤 3: 验证结果
我们可以通过验证 来检查结果是否正确:
因此,结果正确,。
总结
- 构造增广矩阵: [A∣I] 。
- 进行初等行变换:逐步将 A 化为单位矩阵 I。
- 提取逆矩阵:当 A 变为单位矩阵后,右边的矩阵即为
。