利用初等行变换求解矩阵的逆

利用初等行变换求解矩阵的逆是一种非常实用的方法,通常称为 增广矩阵法高斯-约当消元法。具体步骤是通过将矩阵 A 转化为单位矩阵 I,同时对单位矩阵进行相同的行变换,最终得到矩阵 A 的逆矩阵A^{-1}

步骤概述

  1. 构造增广矩阵:将待求矩阵 A 和单位矩阵 I 增广在一起,形成 [A∣I]。

  2. 利用初等行变换将 A 化为单位矩阵 I:对增广矩阵 [A∣I] 的左半部分 A 进行初等行变换,最终将其化为单位矩阵 I。

  3. 右半部分即为逆矩阵:当左半部分变为 I 后,增广矩阵的右半部分将变成A^{-1}

注:初等行变换法求解矩阵的逆的本质是:[A | I]\Rightarrow [A^{-1} A| A^{-1} I]\Rightarrow [I | A]

例:求矩阵 A 的逆矩阵

假设矩阵 A 为:

A = \begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix}

我们将通过初等行变换求解它的逆矩阵。

步骤 1: 构造增广矩阵

将矩阵 AA和单位矩阵 I 增广在一起:

[A | I] = \begin{pmatrix} 2 & 1 & | & 1 & 0 \\ 5 & 3 & | & 0 & 1 \end{pmatrix}

步骤 2: 使用初等行变换将 A 化为单位矩阵
  1. 将第一行的第一个元素变为 1:将第 1 行除以 2:

    R_1 = \frac{R_1}{2} \Rightarrow \begin{pmatrix} 1 & \frac{1}{2} & | & \frac{1}{2} & 0 \\ 5 & 3 & | & 0 & 1 \end{pmatrix}
  2. 将第 2 行的第一个元素变为 0:用第 2 行减去 5 倍的第 1 行:

    R_2 = R_2 - 5R_1 \Rightarrow \begin{pmatrix} 1 & \frac{1}{2} & | & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & | & -\frac{5}{2} & 1 \end{pmatrix}
  3. 将第二行的第二个元素变为 1:将第 2 行乘以 2:

    R_2 = 2R_2 \Rightarrow \begin{pmatrix} 1 & \frac{1}{2} & | & \frac{1}{2} & 0 \\ 0 & 1 & | & -5 & 2 \end{pmatrix}
  4. 将第一行的第二个元素变为 0:用第 1 行减去 \frac{1}{2}​ 倍的第 2 行:

    R_1 = R_1 - \frac{1}{2}R_2 \Rightarrow \begin{pmatrix} 1 & 0 & | & 3 & -1 \\ 0 & 1 & | & -5 & 2 \end{pmatrix}

现在,增广矩阵的左半部分已经成为单位矩阵 I,右半部分即为矩阵 A的逆矩阵:

A^{-1} = \begin{pmatrix} 3 & -1 \\ -5 & 2 \end{pmatrix}

步骤 3: 验证结果

我们可以通过验证 A A^{-1} = I来检查结果是否正确:

A A^{-1} = \begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix} \begin{pmatrix} 3 & -1 \\ -5 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}

因此,结果正确,A^{-1} = \begin{pmatrix} 3 & -1 \\ -5 & 2 \end{pmatrix}

总结

  1. 构造增广矩阵: [A∣I] 。
  2. 进行初等行变换:逐步将 A 化为单位矩阵 I。
  3. 提取逆矩阵:当 A 变为单位矩阵后,右边的矩阵即为 A^{-1}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤劳的进取家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值