线性系统理论期末复习

本文是作者在期末复习时的一些总结,个人心得,内容粗糙,多有纰漏,欢迎大家批评指正。希望对您有所帮助。

参考资料:

[1] 《线性系统理论》(第二版)郑大钟编著

[2] 《线性系统理论习题解答》(第二版)郑大钟编著

[3] 《线性系统理论与设计》陈啟宗

[4] 网课:线性系统理论 北京理工大学 学堂在线

     网址:https://www.xuetangx.com/course/bitP0701003686/21558998?channel=i.area.recent_search


第一章  系统的数学描述

考点

一、如何列写系统动态方程:

  1. 根据物理定律,给出微分方程
     
  2. 选状态变量

    (机械系统:取质量块 m 的位移及其速度为状态变量,通常 eq?x_1%3Dy%2Cx_2%3D%7By%7D%27,y 是物块的位移,一般作为输出变量,外力 F 或传送带速度 v 都可以作为输入变量,多个质量块就选取每个质量块的位移及速度作为状态变量)

    (电路系统:通常选取电容电压和电感电流作为状态变量。有时候不是所有电容电压和电感电流都要作为状态变量,有一种利用树建立动态方程的方法,可以避免选取多余的状态变量。简单总结就是:①找节点,画树枝,确定链 ②选状态变量:树枝电容电压,链上电感电流 ③关系表示:链上电感用电压定律,树上电容用电流定律)
     
  3. 转换成一阶微分方程组
     
  4. 写成矩阵形式

二、由方框图描述导出状态空间描述:

  1. 将一个方框图中所有环节的传递函数拆开(拆成串联或并联的多个环节),使各个环节的传递函数只为一阶惯性环节 eq?%5Cfrac%7B1%7D%7Bs+a%7D 和比例放大环节 eq?k_%7Bi%7D
  2. 将一阶惯性环节的输出指定为状态变量。
  3. 列些变量(状态、输入、输出)间的关系方程。
  4. 导出变换域(时域)状态变量方程和输出变量方程。
  5. 导出状态空间描述。

三、输入输出描述与传递函数描述的使用条件

        什么样的系统可以用输入输出描述?——初始松弛

        什么样的系统可以用传递函数描述?——t=0松弛的线性时不变系统

四、反馈系统的状态变量描述存在条件:

eq?%5Cdet%5Cleft%28I_%7Bq%7D+%5Cleft%28G_%7B1%7D%28s%29G_%7B2%7D%28s%29%5Cright%29%5Cneq0%5Cright. 或 eq?%5Cdet%5Cleft%28I_%7Bp%7D+%5Cleft%28G_%7B2%7D%28s%29G_%7B1%7D%28s%29%5Cright%29%5Cneq0%5Cright.

        反馈系统状态变量描述存在的条件是:

eq?%5Cdet%5Cleft%20%28%20I_%7Bq%7D+E_%7B1%7DE_%7B2%7D%29%5Cneq0%5Cright. 和 eq?%5Cdet%5Cleft%20%28%20I_%7Bq%7D+E_%7B2%7DE_%7B1%7D%29%5Cneq0%5Cright.

五、判定系统的适定性:

        适定性:设组合系统的每一个子系统均可由有理传递函数描述。若每一个子系统的传递函数是正则的,且从任意作为输入端的点至沿着有向路径的每一个其他点的闭环传递函数存在且正则,则成该组合系统是适定的(Well posed)。

f9f83f93c9c44bd882d09a036af4ef6f.jpeg


        设典型反馈系统中 eq?G_%7Bi%7D%28s%29 是适当结束的有理传递函数矩阵。当且仅当 eq?G_%7Bi%7D%28s%29%5Cleft%20%28%20i%3D1%2C2%2C3%2C4%20%5Cright%20%29 正则以及有理矩阵

eq?%5Cmathbf%7BG%7D_0%5E%7B-1%7D%28s%29%5Ctriangleq%28%5Cmathbf%7BI%7D+%5Cmathbf%7BG%7D_3%28s%29%5Cmathbf%7BG%7D_1%28s%29+%5Cmathbf%7BG%7D_4%28s%29%5Cmathbf%7BG%7D_2%28s%29%5Cmathbf%7BG%7D_1%28s%29%29%5E%7B-1%7D

存在且正则,或常数阵

eq?%5Cmathbf%7BG%7D_0%28%5Cinfty%29%3D%28%5Cmathbf%7BI%7D+%5Cmathbf%7BG%7D_3%28%5Cinfty%29%5Cmathbf%7BG%7D_1%28%5Cinfty%29+%5Cmathbf%7BG%7D_4%28%5Cinfty%29%5Cmathbf%7BG%7D_2%28%5Cinfty%29%5Cmathbf%7BG%7D_1%28%5Cinfty%29%29

是非奇异时,系统是适定的。

第二章 线性动态方程和脉冲响应矩阵

考点

一、基本矩阵与状态转移矩阵:

        基本矩阵:以方程 eq?%5Cdot%7Bx%7D%3D%5Cmathbf%7BA%7D%28t%29x 的n个线性无关解所构成的矩阵

eq?%5Cmathbf%7B%5CPsi%7D%3D%5Cleft%20%5B%20%5Cpsi%20_%7B1%7D%28t%29~%20%5Cpsi%20_%7B2%7D%28t%29~%5Ccdots~%20%5Cpsi%20_%7Bn%7D%28t%29~%5Cright%20%5D%20%2Ct%5Cin%20%5Cleft%20%28%20-%5Cinfty%2C+%5Cinfty%20%5Cright%20%29

        状态转移矩阵:令 eq?%5Cmathbf%7B%5CPsi%20%7D%28t%29 是 eq?%5Cdot%7Bx%7D%3D%5Cmathbf%7BA%7D%28t%29x 的任意基本矩阵,对所有 eq?%5Cleft%20%28%20-%5Cinfty%2C+%5Cinfty%20%5Cright%20%29 中的 eq?t%2Ct_0,称

eq?%5Cmathbf%7B%5CPhi%20%7D%28t%2Ct_0%29%3D%5Cmathbf%7B%5CPsi%20%7D%28t%29%5Cmathbf%7B%5CPsi%20%7D%5E%7B-1%7D%28t%29

是 eq?%5Cdot%7Bx%7D%3D%5Cmathbf%7BA%7D%28t%29x 的状态转移矩阵。

 

        注意基本矩阵不唯一而状态转移矩阵唯一,状态转移矩阵由 eq?%5Cmathbf%7BA%7D%28t%29 唯一确定。状态转移矩阵可以看作一个线性变化,在时间区间 eq?%5Cleft%20%28%20t%2Ct_0%20%5Cright%20%29 内,将 eq?t_0 时的状态 eq?x_0 映射到时刻 eq?t 的状态 eq?x_t

 

二、非齐次方程的解:

        时变线性系统的解可以参考一下下面这篇,系统矩阵A里面带t,就不能用 eq?e%5E%7B%5Cmathbf%7BA%7Dt%7D 来求状态转移矩阵。

CSU | 考试复习【线性系统理论】 - 哔哩哔哩https://www.bilibili.com/opus/726926616644550665?from=search&spm_id_from=333.337.0.0        状态方程:

eq?%5Cdot%7B%5Cboldsymbol%7Bx%7D%7D%3D%5Cmathbf%7BA%7D%5Cboldsymbol%7Bx%7D+%5Cmathbf%7BB%7D%5Cboldsymbol%7Bu%7D%5C%5C%5Cboldsymbol%7Bx%7D%28t_0%29%3D%5Cboldsymbol%7Bx_0%7D

 的解由下式给出:

eq?%5Cmathrm%7Bx%7D%28t%29%3D%5Cmathbf%7B%5CPhi%7D%28t%2Ct_0%29%5Cmathbf%7Bx%7D_0+%5Cint_%7Bt_0%7D%5Et%5Cmathbf%7B%5CPhi%7D%28t%2C%5Ctau%29%5Cmathbf%7BB%7D%28%5Ctau%29%5Cmathbf%7Bu%7D%28%5Ctau%29d%5Ctau

前面一项是零输入响应,后面的一项是零状态响应。

        动态方程的输出是:

eq?%5Cmathbf%7By%7D%28t%29%3D%5Cmathbf%7BC%7D%28t%29%5CPhi%28t%2Ct_0%29%5Cmathbf%7Bx%7D_0+%5Cmathbf%7BC%7D%28t%29%5Cint_%7Bt_0%7D%5Et%5CPhi%28t%2C%5Ctau%29%5Cmathbf%7BB%7D%28%5Ctau%29%5Cmathbf%7Bu%7D%28%5Ctau%29d%5Ctau+%5Cmathbf%7BE%7D%28t%29%5Cmathbf%7Bu%7D%28t%29

若满足松弛条件,eq?x%28t_0%29%3D0,可得脉冲响应矩阵:

 eq?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20t%5Cgeq%5Ctau%7B%3A%7D%5Cquad%5Cmathbf%7BG%7D%28t%2C%5Ctau%29%3D%5Cmathbf%7BC%7D%28t%29%5CPhi%28t%2C%5Ctau%29%5Cmathbf%7BB%7D%28%5Ctau%29+%5Cmathbf%7BE%7D%28t%29%5Cdelta%28t-%5Ctau%29%5C%5C%20t%3C%5Ctau%7B%3A%7D%5Cquad%5Cmathbf%7BG%7D%28t%2C%5Ctau%29%3D0%20%5Cend%7Bmatrix%7D%5Cright.

 

线性时不变系统中:齐次方程组的线性无关解矩阵为 eq?e%5E%7B%5Cmathbf%7BA%7Dt%7Deq?%5Cmathbf%7B%5CPhi%20%7D%28t%2Ct_0%29%3De%5E%7B%5Cmathbf%7BA%7D%28t-t_0%29%7D

线性时不变系统动态方程的解:

eq?%5Cmathbf%7Bx%7D%28t%29%3De%5E%7B%5Cmathrm%7BA%7D%28t-t_0%29%7D%5Cmathbf%7Bx%7D_0+%5Cint_%7Bt_0%7D%5Ete%5E%7B%5Cmathrm%7BA%7D%28t-%5Ctau%29%7D%5Cmathbf%7BBu%7D%28%5Ctau%29d%5Ctau

eq?%5Cmathbf%7By%7D%28t%29%3D%5Cmathbf%7BC%7De%5E%7B%5Cmathrm%7BA%7D%28t-t_0%29%7D%5Cmathbf%7Bx%7D_0+%5Cint_%7Bt_0%7D%5Et%5Cmathbf%7BC%7De%5E%7B%5Cmathrm%7BA%7D%28t-%5Ctau%29%7D%5Cmathbf%7BB%7D%5Cmathbf%7Bu%7D%28%5Ctau%29d%5Ctau+%5Cmathbf%7BE%7D%5Cmathbf%7Bu%7D%28t%29

通常假定t_0 = 0,这时则有:

eq?%5Cbegin%7Baligned%7D%20%26%20%5Cmathbf%7Bx%7D%28t%29%3De%5E%7B%5Cmathbf%7BA%7Dt%7D%5Cmathbf%7Bx%7D%280%29+%5Cint_0%5Ete%5E%7B%5Cmathbf%7BA%7D%28t-t%29%7D%5Cmathbf%7BB%7D%5Cmathbf%7Bu%7D%28t%29dt%20%5C%5C%20%26%20%5Cmathbf%7By%7D%28t%29%3D%5Cmathbf%7BC%7De%5E%7B%5Cmathbf%7BA%7Dt%7D%5Cmathbf%7Bx%7D%280%29+%5Cint_0%5Et%5Cmathbf%7BC%7De%5E%7B%5Cmathbf%7BA%7D%28t-%5Ctau%29%7D%5Cmathbf%7BB%7D%5Cmathbf%7Bu%7D%28%5Ctau%29d%5Ctau+%5Cmathbf%7BE%7D%5Cmathbf%7Bu%7D%28t%29%20%5Cend%7Baligned%7D

三、e^At的计算方法:

方法一:拉普拉斯变换法

eq?e%5E%7B%5Cmathrm%7BA%7Dt%7D%3DL%5E%7B-1%7D%28s%5Cmathbf%7BI%7D-%5Cmathbf%7BA%7D%29%5E%7B-1%7D

方法二:利用A的约当标准型计算

eq?%5Cbegin%7Baligned%7D%20%26%20%5Cmathrm%7BA%7D%3D%5Cmathbf%7BPAP%7D%5E%7B-1%7D%20%5C%5C%20%26%20%5Cmathrm%7BQ%7D%3D%5Cmathbf%7BP%7D%5E%7B-1%7D%20%5C%5C%20%26%20%5Cmathbf%7BA%7D%3D%5Cmathbf%7BQ%7D%5Cmathbf%7B%5Chat%7BA%7D%7D%5Cmathbf%7BQ%7D%5E%7B-1%7D%20%5C%5C%20%26%20e%5E%7B%5Cmathbf%7BA%7Dt%7D%3D%5Cmathbf%7BQ%7De%5E%7B%5Chat%7B%5Cmathbf%7BA%7D%7Dt%7D%5Cmathbf%7BQ%7D%5E%7B-1%7D%20%5Cend%7Baligned%7D

%28n_i-2%29%21%20%5C%5C%20%26%20%26%20%5Cddots%20%26%20%26%20%5Cvdots%20%5C%5C%20%26%20%26%20%26%20%26%20e%5E%7B%5Clambda_it%7D%20%5Cend%7Bbmatrix%7D%20%5Cend%7Baligned%7D%5C%5C%5Chat%7B%5Cmathbf%7BA%7D%7D%3D%20%5Cbegin%7Bbmatrix%7D%20%5Chat%7B%5Cmathbf%7BA%7D%7D_1%20%5C%5C%20%26%20%5Chat%7B%5Cmathbf%7BA%7D%7D_2%20%5Cend%7Bbmatrix%7D%5CRightarrow%20f%28%5Chat%7B%5Cmathbf%7BA%7D%7D%29%3D%20%5Cbegin%7Bbmatrix%7D%20f%28%5Chat%7B%5Cmathbf%7BA%7D%7D_1%29%20%5C%5C%20%26%20f%28%5Chat%7B%5Cmathbf%7BA%7D%7D_2%29%20%5Cend%7Bbmatrix%7D

方法三:凯莱-哈密顿定理(略去,连同定义法一同略去,考试不用)

 

四、怎样把矩阵化为约当标准型*

6419cc5a475f4095817c41376d1a4245.jpeg

eb52db5caf684aa9ba6a08c2e5d5e825.jpeg

592f1fe0516f4c53b66f18d27a00b75a.jpeg

bacf0e583376479d8cab94391399763e.jpeg

此法求出的P实际上是下面的P逆

五、等价动态方程

        若系统 eq?%28%5Cmathbf%7BA%7D%2C%5Cmathbf%7BB%7D%2C%5Cmathbf%7BC%7D%2C%5Cmathbf%7BE%7D%29 与系统 eq?%28%5Cbar%7B%5Cmathbf%7BA%7D%7D%2C%5Cbar%7B%5Cmathbf%7BB%7D%7D%2C%5Cbar%7B%5Cmathbf%7BC%7D%7D%2C%5Cbar%7B%5Cmathbf%7BE%7D%7D%29 等价,则经 eq?%5Cbar%7B%5Cboldsymbol%7Bx%7D%7D%3DP%5Cboldsymbol%7Bx%7D 变换后,有

eq?%5Cbegin%7Baligned%7D%20%26%20%5Cbar%7B%5Cmathbf%7BA%7D%7D%3D%5Cmathbf%7BPAP%7D%5E%7B-1%7D%20%5C%5C%20%26%20%5Cbar%7B%5Cmathbf%7BB%7D%7D%3D%5Cmathbf%7BPB%7D%20%5C%5C%20%26%20%5Cbar%7B%5Cmathbf%7BC%7D%7D%3D%5Cmathbf%7BCP%7D%5E%7B-1%7D%20%5C%5C%20%26%20%5Cbar%7B%5Cmathbf%7BE%7D%7D%3D%5Cmathbf%7BE%7D%20%5Cend%7Baligned%7D

在任何等价变换之下,线性时不变系统的可控性和可观测性不变。

第三章 线性动态方程的可控性和可观测性

考点

一、可控性的一般判别准则:

        状态方程 eq?%5Cdot%7B%5Cboldsymbol%7Bx%7D%7D%3D%5Cmathbf%7BA%7D%5Cboldsymbol%7Bx%7D+%5Cmathbf%7BB%7D%5Cboldsymbol%7Bu%7D ,在 t_0 可控的充分必要条件是,存在一个有限时间 eq?t_1%3E%20t_0,使得 eq?n%5Ctimes%20p 矩阵  eq?%5Cmathbf%7B%5CPhi%7D%28t_0%2C%5Ctau%29%5Cmathbf%7BB%7D%28%5Ctau%29 的 n 个行在 eq?%5Cleft%20%5B%20t_0%2Ct_1%20%5Cright%20%5D 上线性无关。
9f3ab3c7a38e44febf9d241885844fa8.png

         eq?%5Cmathbf%7B%5CPhi%7D%28t_0%2C%5Ctau%29%5Cmathbf%7BB%7D%28%5Ctau%29 的 n 个行在 eq?%5Cleft%20%5B%20t_0%2Ct_1%20%5Cright%20%5D 上线性无关,其格莱姆矩阵非奇异。

可控性Gram矩阵:

eq?%5Cbegin%7Baligned%7D%20%26%20%5Cmathbf%7BW%7D%28t_0%2Ct_1%29%5Ctriangleq%5Cint_%7Bt_0%7D%5E%7Bt_1%7D%5Cmathbf%7B%5CPhi%7D%28t_0%2C%5Ctau%29%5Cmathbf%7BB%7D%28%5Ctau%29%5Cmathbf%7BB%7D%5E*%28%5Ctau%29%5Cmathbf%7B%5CPhi%7D%5E*%28t_0%2C%5Ctau%29d%5Ctau%20%5C%5C%20%26%20%5CRightarrow%5Cdet%5Cmathbf%7BW%7D%28t_0%2Ct_1%29%5Cneq0%20%5Cend%7Baligned%7D

        对于任给的 x(t_0) ,构造如下控制输入

eq?%5Cbegin%7Baligned%7D%20%5Cmathbf%7Bu%7D%28t%29%3D-%5Cmathbf%7BB%7D%5E*%28t%29%5Cmathbf%7B%5CPhi%7D%5E*%28t_0%2Ct%29%5Cmathbf%7BW%7D%5E%7B-1%7D%28t_0%2Ct_1%29%5B%5Cmathbf%7Bx%7D_0-%5Cmathbf%7B%5CPhi%7D%28t_0%2Ct_1%29%5Cmathbf%7Bx%7D_1%5D%20~~%20t%5Cin%5Bt_0%2Ct_1%5D%20%5Cend%7Baligned%7D

        倘若题目中给出了系统的初始状态 x(0),求一个外力 u(t),使得系统在 2 秒内静止。这相当于给定了 eq?t_0%3D0%2Ct_1%3D2%2C%5Cboldsymbol%7Bx_1%7D%3D%5Cboldsymbol%7B0%7D,在常考的线性时不变系统中,上面两个公式可以写作:

eq?%5Cbegin%7Baligned%7D%20%26%20%5Cmathbf%7BW%7D%280%2Ct_1%29%5Ctriangleq%5Cint_%7B0%7D%5E%7Bt_1%7De%5E%7B%5Cmathbf%7BA%7D%280-%5Ctau%20%29%7D%5Cmathbf%7BB%7D%5Cmathbf%7BB%7D%5E*e%5E%7B%5Cmathbf%7BA%5E*%7D%280-%5Ctau%20%29%7Dd%5Ctau%5Cend%7Baligned%7D%5C%5C%20u%28t%29%3D-%5Cmathbf%7BB%7D%5ETe%5E%7B-%5Cmathbf%7BA%7D%5ETt%7D%5Cmathbf%7BW%7D%5E%7B-1%7D%280%2Ct_1%29%5Cboldsymbol%7Bx_0%7D

二、可观测性的一般判别准则

        状态方程 eq?%5Cdot%7B%5Cboldsymbol%7Bx%7D%7D%3D%5Cmathbf%7BA%7D%28t%29%5Cboldsymbol%7Bx%7D+%5Cmathbf%7BB%7D%28t%29%5Cboldsymbol%7Bu%7D%5C%5C%20%5Cboldsymbol%7By%7D%3D%5Cmathbf%7BC%7D%28t%29%5Cboldsymbol%7Bx%7D+%5Cmathbf%7BE%7D%28t%29%5Cboldsymbol%7Bu%7D ,在 eq?t_0 时刻可观测的充分必要条件是,存在一个有限时间 

eq?t_1%3E%20t_0,使得矩阵  eq?%5Cmathbf%7BC%7D%28t%29%5Cmathbf%7B%5CPhi%7D%28t%2Ct_0%29 的 n 个列在 eq?%5Cleft%20%5B%20t_0%2Ct_1%20%5Cright%20%5D 上线性无关。或等价地

eq?V%28t_0%2Ct_1%29%3D%5Cint_%7Bt_0%7D%5E%7Bt_1%7D%5CPhi%5E*%28%5Ctau%2Ct_0%29C%5E*%28%5Ctau%29C%28%5Ctau%29%5CPhi%28%5Ctau%2Ct_0%29d%5Ctau

非奇异。

三、连续时间线性时变系统的能控性判据和能观测性判据 (充分条件)

        连续时间线性时变系统“eq?%5Cdot%7B%5Cboldsymbol%7Bx%7D%7D%3D%5Cmathbf%7BA%7D%28t%29%5Cboldsymbol%7Bx%7D+%5Cmathbf%7BB%7D%28t%29%5Cboldsymbol%7Bu%7D%2C%5Cboldsymbol%7By%7D%3D%5Cmathbf%7BC%7D%28t%29%5Cboldsymbol%7Bx%7D%2C~t%5Cin%20J,A(t) 为 n×n 阵,B(t) 为 n×p 阵,C(t)为 q×n 阵”。组成并计算一组矩阵:

 ​​​​​​eq?M_%7B0%7D%28t%29%3DB%28t%29%2C%5C%5C%5Cquad%20M_%7B1%7D%28t%29%3D-A%28t%29M_%7B0%7D%28t%29+%5Cfrac%7B%5Cmathrm%7Bd%7D%7D%7B%5Cmathrm%7Bd%7Dt%7DM_%7B0%7D%28t%29%2C%5C%5CM_%7B2%7D%28t%29%3D-A%28t%29M_%7B1%7D%28t%29+%5Cfrac%7B%5Cmathrm%7Bd%7D%7D%7B%5Cmathrm%7Bd%7Dt%7DM_%7B1%7D%28t%29%2C%5C%5C%5Cquad%5Ccdots%2C%5C%5C%5Cquad%20M_%7Bn-1%7D%28t%29%3D-A%28t%29M_%7Bn-2%7D%28t%29+%5Cfrac%7B%5Cmathrm%7Bd%7D%7D%7B%5Cmathrm%7Bd%7Dt%7DM_%7Bn-2%7D%28t%29

        存在时刻 eq?t_1%5Cin%20J%2Ct_1%3Et_0,使 eq?%5Cmathrm%7Brank%7D%5Cleft%5BM_0%28t_1%29~~%20M_1%28t_1%29~~%5Ccdots~~%20M_%7Bn-1%7D%28t_1%29%5Cright%5D%3Dn 可以推出系统为时刻 eq?t_0%5Cin%20J 完全可控。

 

        组成并计算一组矩阵:

 eq?N_%7B0%7D%28t%29%3DC%28t%29%2C%5C%5CN_%7B1%7D%28t%29%3DN_%7B0%7D%28t%29A%28t%29+%5Cfrac%7B%5Cmathrm%7Bd%7D%7D%7B%5Cmathrm%7Bd%7Dt%7DN_%7B0%7D%28t%29%2C%5C%5CN_%7B2%7D%28t%29%3DN_%7B1%7D%28t%29A%28t%29+%5Cfrac%7B%5Cmathrm%7Bd%7D%7D%7B%5Cmathrm%7Bd%7Dt%7DN_%7B1%7D%28t%29%2C%5C%5C%5Ccdots%2C%5C%5CN_%7Bn-1%7D%28t%29%3DN_%7Bn-2%7D%28t%29A%28t%29+%5Cfrac%7B%5Cmathrm%7Bd%7D%7D%7B%5Cmathrm%7Bd%7Dt%7DN_%7Bn-2%7D%28t%29

        存在时刻 eq?t_1%5Cin%20J%2Ct_1%3Et_0,使

 eq?%5Cmathbf%7Brank%7D%20%5Cbegin%7Bbmatrix%7D%20N_0%28t_1%29%20%5C%5C%20N_1%28t_1%29%20%5C%5C%20%5Cvdots%20%5C%5C%20N_%7Bn-1%7D%28t_1%29%20%5Cend%7Bbmatrix%7D%3Dn 

可以推出系统为时刻 eq?t_0%5Cin%20J 完全可观。

四、简化的可控性条件

        在许多情况下,利用可控性矩阵来判断可控性时,无须计算出矩阵 eq?%5Cbegin%7Bbmatrix%7D%20B%20%26%20AB%20%26%20%5Ccdots%20%26%20A%5E%7Bn-1%7DB%20%5Cend%7Bbmatrix%7D ,而是只须计算一个列数较小的矩阵。记

eq?%5Cmathbf%7BU%7D_%7Bk-1%7D%5Cmathbf%7B%3D%7D%5B%5Cmathbf%7BB%7D~%5Cmathbf%7BAB%7D~%5Ccdots%20~%5Cmathbf%7BA%7D%5E%7Bk-1%7D%5Cmathbf%7BB%7D%5D

        若 j 是使 eq?rank%20%5Cmathbf%7BU%7D_j%3Drank%20%5Cmathbf%7BU%7D_%7Bj+1%7D 成立的最小整数,则对于所有 eq?k%3Ej,有

eq?rank%20%5Cmathbf%7BU%7D_k%3Drank%20%5Cmathbf%7BU%7D_%7Bj%7D%5C%5Cj%5Cleq%20min%5Cleft%20%5C%7B%20n-r%2C%5Cbar%7Bn%7D-1%20%5Cright%20%5C%7D

其中 eq?r 是矩阵 eq?%5Cmathbf%7BB%7D 的秩,eq?%5Cbar%7Bn%7D 是矩阵 eq?%5Cmathbf%7BA%7D 的最小多项式的次数。

        矩阵 eq?%5Cmathbf%7BA%7D 的最小多项式:对于一个 n×n 的矩阵 eq?%5Cmathbf%7BA%7D其最小多项式 eq?%5Cpsi%20%28%5Clambda%20%29 是满足 eq?%5Cpsi%20%28%5Cmathbf%7BA%7D%20%29%3D%5Cmathbf%7B0%7D 的最小次数的单变量多项式,其中 eq?%5Cmathbf%7B0%7D 是 n×n 的零矩阵。最小多项式的存在性和唯一性可以通过凯莱-哈密顿定理来保证,该定理指出,每个矩阵都满足其特征多项式,而特征多项式是矩阵的一个多项式,且其次数为 n。最小多项式是特征多项式的一个子式。

五、连续时间线性时不变系统的能控性常用判据

①格拉姆矩阵判据(并不常用,但是这个公式可以再记一下)

        存在时刻 eq?t_1%3E0,有 系统完全能控的充分必要条件:格拉姆矩阵非奇异。格拉姆矩阵如下:

eq?W_%7B%5Cmathrm%7Bc%7D%7D%5B0%2Ct_%7B1%7D%5D%3D%5Cint_%7B0%7D%5E%7Bt_%7B1%7D%7D%5Cmathrm%7Be%7D%5E%7B-At%7DBB%5E%7B%5Cmathrm%7BT%7D%7D%5Cmathrm%7Be%7D%5E%7B-A%5E%7B%5Cmathrm%7BT%7D%7Dt%7D%5Cmathrm%7Bd%7Dt

秩判据

        系统完全可控充要条件:

eq?Q_%7B%5Cmathrm%7Bc%7D%7D%3D%20%5Cbegin%7Bbmatrix%7D%20B%20%26%20AB%20%26%20%5Ccdots%20%26%20A%5E%7Bn-1%7DB%20%5Cend%7Bbmatrix%7D

行满秩,即 eq?rank%5Cmathbf%7BQ_c%7D%3Dn

③PBH秩判据

        对于 eq?%5Cmathbf%7BA%7D 的任一特征值 eq?%5Clambda%20_i,都有 eq?rank%5Cleft%20%5B%20%5Clambda%20_i%5Cmathbf%7BI%7D-%5Cmathbf%7BA%7D%20~~%20%5Cmathbf%7BB%7D%20%5Cright%20%5D%3Dn

④约当规范形判据 

        系统特征值 eq?%5Clambda_1%2C%5Clambda_2%2C%5Ccdots%2C%5Clambda_n 两两相异情形:先将系统状态方程通过变换化为约当规范形

eq?%5Cdot%7B%5Cbar%7B%5Cboldsymbol%7Bx%7D%7D%7D%3D%20%5Cbegin%7Bbmatrix%7D%20%5Clambda_1%20%26%20%26%20%26%20%5C%5C%20%26%20%5Clambda_2%20%26%20%26%20%5C%5C%20%26%20%26%20%5Cddots%20%26%20%5C%5C%20%26%20%26%20%26%20%5Clambda_n%20%5Cend%7Bbmatrix%7D%5Cbar%7B%5Cboldsymbol%7Bx%7D%7D+%5Cbar%7B%5Cmathbf%7BB%7D%7D%5Cboldsymbol%7Bu%7D

        系统完全能控的充要条件是:eq?%5Cbar%7B%5Cmathbf%7BB%7D%7D不含零行。

 

        特征值eq?%5Clambda%20_1eq?%5Csigma%20_1重),eq?%5Clambda%20_2eq?%5Csigma%20_2重),…,eq?%5Clambda%20_leq?%5Csigma%20_l重),eq?%5Clambda_i%5Cneq%20%5Clambda_j%2C%5Cforall%20i%5Cneq%20j 情形:先将系统状态方程通过变换化为约当规范形

eq?%5Cdot%7B%5Chat%7Bx%7D%7D%3D%5Chat%7BA%7D%5Chat%7Bx%7D+%5Chat%7BB%7Du

其中

eq?%5Cbegin%7Bgathered%7D%20%5Chat%7B%5Cboldsymbol%7BA%7D%7D%3D%20%5Cbegin%7Bbmatrix%7D%20%5Cboldsymbol%7BJ%7D_1%20%5C%5C%20%26%20%5Cboldsymbol%7BJ%7D_2%20%5C%5C%20%26%20%26%20%5Cddots%20%5C%5C%20%26%20%26%20%26%20%5Cboldsymbol%7BJ%7D_l%20%5Cend%7Bbmatrix%7D_%7B%28n%5Ctimes%20n%29%7D%2C%5Cquad%5Chat%7B%5Cboldsymbol%7BB%7D%7D%3D%20%5Cbegin%7Bbmatrix%7D%20%5Chat%7B%5Cboldsymbol%7BB%7D%7D_1%20%5C%5C%20%5Chat%7B%5Cboldsymbol%7BB%7D%7D_2%20%5C%5C%20%5Cvdots%20%5C%5C%20%5Chat%7B%5Cboldsymbol%7BB%7D%7D_l%20%5Cend%7Bbmatrix%7D%20_%7B%28n%5Ctimes%20p%29%7D%5C%5C%20%5Cboldsymbol%7BJ%7D_i%3D%20%5Cbegin%7Bbmatrix%7D%20%5Cboldsymbol%7BJ%7D_%7Bi1%7D%20%5C%5C%20%26%20%5Cboldsymbol%7BJ%7D_%7Bi2%7D%20%5C%5C%20%26%20%26%20%5Cddots%20%5C%5C%20%26%20%26%20%26%20%5Cboldsymbol%7BJ%7D_%7Bi%5Csigma_i%7D%20%5Cend%7Bbmatrix%7D_%7B%28%5Csigma_i%5Ctimes%5Csigma_i%29%7D%2C%5Cquad%5Chat%7B%5Cboldsymbol%7BB_i%7D%7D%3D%20%5Cbegin%7Bbmatrix%7D%20%5Chat%7B%5Cboldsymbol%7BB%7D%7D_%7Bi1%7D%20%5C%5C%20%5Chat%7B%5Cboldsymbol%7BB%7D%7D_%7Bi2%7D%20%5C%5C%20%5Cvdots%20%5C%5C%20%5Chat%7B%5Cboldsymbol%7BB%7D%7D_%7Bi%5Csigma_i%7D%20%5Cend%7Bbmatrix%7D%20_%7B%28%5Csigma_i%5Ctimes%20p%29%7D%5Cend%7Bgathered%7D%5C%5C%5Cboldsymbol%7BJ%7D_%20%7Bik%7D%3D%20%5Cbegin%7Bbmatrix%7D%20%5Clambda_i%20%26%201%20%5C%5C%20%26%20%5Clambda_i%20%26%201%20%5C%5C%20%26%20%26%20%5Cddots%20%26%20%5Cddots%20%5C%5C%20%26%20%26%20%26%20%5Cddots%20%26%201%20%5C%5C%20%26%20%26%20%26%20%26%20%5Clambda_i%20%5Cend%7Bbmatrix%7D_%7B%28r_%7Bik%7D%5Ctimes%20r_%7Bik%7D%29%7D%2C%5Cquad%5Cboldsymbol%7B%5Chat%7BB%7D%7D_%7Bik%7D%3D%20%5Cbegin%7Bbmatrix%7D%20%5Chat%7B%5Cboldsymbol%7Bb%7D%7D_%7B1ik%7D%20%5C%5C%20%5Chat%7B%5Cboldsymbol%7Bb%7D%7D_%7B2ik%7D%20%5C%5C%20%5Cvdots%20%5C%5C%20%5Chat%7B%5Cboldsymbol%7Bb%7D%7D_%7Brik%7D%20%5Cend%7Bbmatrix%7D_%7B%28r_%7Bik%7D%5Ctimes%20p%29%7D

        系统完全能控的充要条件:

        eq?%5Cforall%20i%3D1%2C2%2C%5Ccdots%2Cl,由eq?%5Chat%7BB%7D_%7Bi1%7D%2C%5Chat%7BB%7D_%7Bi2%7D%2C%5Ccdots%2C%5Chat%7BB%7D_%7Bi%5Calpha_i%7D末行组成的矩阵线性无关。

六、连续时间线性时不变系统的能观测性常用判据

①格拉姆矩阵判据(并不常用)

        存在时刻 eq?t_1%3E0,有 系统完全能观的充分必要条件:格拉姆矩阵非奇异。格拉姆矩阵如下:

eq?W_%7B%5Cmathrm%7Bo%7D%7D%5B0%2Ct_%7B1%7D%5D%3D%5Cint_%7B0%7D%5E%7Bt_%7B1%7D%7D%5Cmathrm%7Be%7D%5E%7B-A%5E%7B%5Cmathrm%7BT%7D%7Dt%7D%20C%5E%7B%5Cmathrm%7BT%7D%7DC%5Cmathrm%7Be%7D%5E%7B-At%7D%5Cmathrm%7Bd%7Dt

秩判据

        系统完全可观充要条件:

eq?Q_%7B%5Cmathrm%7Bo%7D%7D%3D%20%5Cbegin%7Bbmatrix%7D%20C%20%5C%5C%20CA%20%5C%5C%20%5Ccdots%20%5C%5C%20C%20A%5E%7Bn-1%7D%20%5Cend%7Bbmatrix%7D

行满秩,即 eq?rank%5Cmathbf%7BQ_o%7D%3Dn

③PBH秩判据

        对于 eq?%5Cmathbf%7BA%7D 的任一特征值 eq?%5Clambda%20_i,都有 eq?rank%5Cbegin%7Bbmatrix%7D%20%5Cmathbf%7BC%7D%5C%5C%20%5Clambda%20_i%5Cmathbf%7BI%7D-%5Cmathbf%7BA%7D%20%5Cend%7Bbmatrix%7D%3Dn

④约当规范形判据 

        系统特征值 eq?%5Clambda_1%2C%5Clambda_2%2C%5Ccdots%2C%5Clambda_n 两两相异情形:先将系统状态方程通过变换化为约当规范形

eq?%5Cdot%7B%5Cbar%7B%5Cboldsymbol%7Bx%7D%7D%7D%3D%20%5Cbegin%7Bbmatrix%7D%20%5Clambda_1%20%26%20%26%20%26%20%5C%5C%20%26%20%5Clambda_2%20%26%20%26%20%5C%5C%20%26%20%26%20%5Cddots%20%26%20%5C%5C%20%26%20%26%20%26%20%5Clambda_n%20%5Cend%7Bbmatrix%7D%5Cbar%7B%5Cboldsymbol%7Bx%7D%7D%2C%5Cquad%20y%3D%5Cbar%7B%5Cmathbf%7BC%7D%7D%5Cbar%7B%5Cboldsymbol%7Bx%7D%7D

        系统完全能观的充要条件是:eq?%5Cbar%7B%5Cmathbf%7BC%7D%7D不含零行。

 

        特征值eq?%5Clambda%20_1eq?%5Csigma%20_1重),eq?%5Clambda%20_2eq?%5Csigma%20_2重),…,eq?%5Clambda%20_leq?%5Csigma%20_l重),eq?%5Clambda_i%5Cneq%20%5Clambda_j%2C%5Cforall%20i%5Cneq%20j 情形:先将系统状态方程通过变换化为约当规范形

eq?%5Cdot%7B%5Chat%7Bx%7D%7D%3D%5Chat%7BA%7D%5Chat%7Bx%7D%2C%5Cquad%20y%3D%5Chat%7BC%7D%5Chat%7Bx%7D

其中

eq?%5Chat%7BA%7D%3D%20%5Cbegin%7Bbmatrix%7D%20%5Cboldsymbol%7BJ%7D_1%20%5C%5C%20%26%20%5Cboldsymbol%7BJ%7D_2%20%5C%5C%20%26%20%26%20%5Cddots%20%5C%5C%20%26%20%26%20%26%20%5Cboldsymbol%7BJ%7D_l%20%5Cend%7Bbmatrix%7D_%7B%28n%5Ctimes%20n%29%7D%2C%5Cquad%5Chat%7B%5Cboldsymbol%7BC%7D%7D%3D%20%5Cbegin%7Bbmatrix%7D%20%5Chat%7B%5Cboldsymbol%7BC%7D%7D_1%2C%20%26%20%5Chat%7B%5Cboldsymbol%7BC%7D%7D_2%2C%20%26%20%5Ccdots%2C%20%26%20%5Chat%7B%5Cboldsymbol%7BC%7D%7D_l%20%5Cend%7Bbmatrix%7D_%7B%28n%5Ctimes%20n%29%7D%5C%5C%5Cboldsymbol%7BJ%7D_i%3D%20%5Cbegin%7Bbmatrix%7D%20%5Cboldsymbol%7BJ%7D_%7Bi1%7D%20%5C%5C%20%26%20%5Cboldsymbol%7BJ%7D_%7Bi2%7D%20%5C%5C%20%26%20%26%20%5Cddots%20%5C%5C%20%26%20%26%20%26%20%5Cboldsymbol%7BJ%7D_%7Bil%7D%20%5Cend%7Bbmatrix%7D%2C%5Cquad%5Cboldsymbol%7B%5Chat%7BC%7D%7D_i%3D%20%5Cbegin%7Bbmatrix%7D%20%5Cboldsymbol%7B%5Chat%7BC%7D%7D_%7Bi1%7D%2C%20%26%20%5Cboldsymbol%7B%5Chat%7BC%7D%7D_%7Bi2%7D%2C%5Ccdots%2C%20%26%20%5Cboldsymbol%7B%5Chat%7BC%7D%7D_%7Bi%5Csigma_i%7D%20%5Cend%7Bbmatrix%7D%5C%5C%5Cbegin%7Baligned%7D%20%5Cboldsymbol%7BJ%7D_%7Bik%7D%3D%20%26%20%5Cbegin%7Bbmatrix%7D%20%5Clambda_i%20%26%201%20%26%20%26%20%26%20%5C%5C%20%26%20%5Clambda_i%20%26%201%20%26%20%26%20%5C%5C%20%26%20%26%20%5Cddots%20%26%20%5Cddots%20%26%20%5C%5C%20%26%20%26%20%26%20%5Cddots%20%26%201%20%5C%5C%20%26%20%26%20%26%20%26%20%5Clambda_i%20%5Cend%7Bbmatrix%7D%2C%5Cquad%5Cboldsymbol%7B%5Chat%7BC%7D%7D_%7Bik%7D%3D%20%26%20%5Cbegin%7Bbmatrix%7D%20%5Chat%7Bc%7D_%7B1ik%7D%2C%20%26%20%5Chat%7Bc%7D_%7B2ik%7D%2C%20%26%20%5Ccdots%2C%20%26%20%5Chat%7Bc%7D_%7Brik%7D%20%5Cend%7Bbmatrix%7D%20%5Cend%7Baligned%7D

        系统完全能观的充要条件:eq?%5Cforall%20i%3D1%2C2%2C%5Ccdots%2Cleq?%5Chat%7BC%7D_%7Bi1%7D%2C%5Chat%7BC%7D_%7Bi2%7D%2C%5Ccdots%2C%5Chat%7BC%7D_%7Bi%5Calpha_i%7D首列组成的矩阵为列线性无关。

七、时不变系统的振型(模态)、模式和模式抑制

        通常我们把 A 的特征值 eq?%5Clambda%20_i 称为系统的振型或模态,把 eq?e%5E%7B%5Cmathbf%7BA%7Dt%7D 中的

eq?t%5Eke%5E%7B%5Clambda_it%7D~~%28k%3D0%2C1%2C2%2C%5Cldots%2Cn_i%2Ci%3D1%2C2%2C%5Cldots%2Cm%29

称为方程 eq?%5Cdot%7B%5Cboldsymbol%7Bx%7D%7D%3D%5Cmathbf%7BA%7D%5Cboldsymbol%7Bx%7D+%5Cmathbf%7BB%7D%5Cboldsymbol%7Bu%7D 与 eq?%5Clambda%20_i 相对应的模式。每个特征值可能有 eq?n_i 重,eq?%5Csum_%7Bi%3D1%7D%5E%7Bm%7Dn_i%3Dn

        使矩阵eq?%5Cleft%20%5B%20%5Clambda%20_i%5Cmathbf%7BI%7D-%5Cmathbf%7BA%7D%20~~%20%5Cmathbf%7BB%7D%20%5Cright%5D满秩的 eq?%5Clambda%20_i 称为可控振型;使矩阵 eq?%5Cleft%20%5B%20%5Clambda%20_i%5Cmathbf%7BI%7D-%5Cmathbf%7BA%7D%20~~%20%5Cmathbf%7BB%7D%20%5Cright%5D降秩的 eq?%5Clambda%20_i 称为(包含了)不可控振型。eq?n_i = 可控振型 eq?%5Clambda%20_i 个数 + 不可控振型 eq?%5Clambda%20_i 个数,并不能说所有的 eq?%5Clambda%20_i 都不可控,计算究竟有几个 eq?%5Clambda%20_i 是可控的,几个 eq?%5Clambda%20_i 是不可控的,需要用其他方法:

        1)计算可控性矩阵的秩,有 eq?n-rank%5Cbegin%7Bbmatrix%7D%20B%20%26%20AB%20%26%20%5Ccdots%20%26%20A%5E%7Bn-1%7DB%20%5Cend%7Bbmatrix%7D 个模态不可控。        

        2)可控性分解

        当线性时不变动态方程可控,输入一定能激励方程的所有模式,也能抑制任何不希望的模式,使之不出现在输出中。
 

8d309f057f0b4ad08aadd8c78baae95f.jpeg

        若系统不可控,则无法实现模式抑制。若系统本身不包含需要抑制的模式,那么只需要 u(t) 本身不包含需要抑制的模式。

八、线性系统的对偶性

0cd8277f075a46cb8c5cbca19101bb84.png

d1fef736021142128493330ac844c159.png

九、动态方程的可控性、可观性分解

        可控性分解:n维时不变动态方程,若动态方程的可控性矩阵U的秩为n_1<n,则存在一个非奇异的常值矩阵P及等价变换eq?%5Cbar%7B%5Cboldsymbol%7Bx%7D%7D%3D%5Cmathbf%7BP%7D%5Cboldsymbol%7Bx%7D,将系统化为下列形式:

eq?%5Cbegin%7Baligned%7D%20%26%20%5Cdot%7B%5Cmathbf%7Bx%7D%7D%3D%20%5Cbegin%7Bbmatrix%7D%20%5Coverline%7B%5Cmathbf%7BA%7D%7D_c%20%26%20%5Coverline%7B%5Cmathbf%7BA%7D%7D_%7B12%7D%20%5C%5C%20%5Cmathbf%7B0%7D%20%26%20%5Coverline%7B%5Cmathbf%7BA%7D%7D_%7B%5Coverline%7Bc%7D%7D%20%5Cend%7Bbmatrix%7D%5Coverline%7B%5Cmathbf%7Bx%7D%7D&plus;%20%5Cbegin%7Bbmatrix%7D%20%5Coverline%7B%5Cmathbf%7BB%7D%7D_c%20%5C%5C%20%5Cmathbf%7B0%7D%20%5Cend%7Bbmatrix%7D%5Cmathbf%7Bu%7D%20%5C%5C%20%26%20%5Cmathbf%7By%7D%3D%5B%5Coverline%7B%5Cmathbf%7BC%7D%7D_c%5Cquad%5Coverline%7B%5Cmathbf%7BC%7D%7D_%7B%5Coverline%7Bc%7D%7D%5D%5Coverline%7B%5Cmathbf%7Bx%7D%7D&plus;%5Cmathbf%7BE%7D%5Cmathbf%7Bu%7D%20%5Cend%7Baligned%7D

其中

eq?%5Cbegin%7Baligned%7D%20%5Coverline%7B%5Cmathbf%7BX%7D%7D%3D%20%26%20%5Cbegin%7Bbmatrix%7D%20%5Coverline%7B%5Cmathbf%7BX%7D%7D_%5Cmathbf%7Bc%7D%20%5C%5C%20%5C%5C%20%5Coverline%7B%5Cmathbf%7BX%7D%7D_%5Cmathbf%7Bc%7D%20%5Cend%7Bbmatrix%7D%20%5C%5C%20%5Coverline%7B%5Cmathbf%7BX%7D%7D_%7Bc%7D%3D%20%26%20%5Cbegin%7Bbmatrix%7D%20%5Coverline%7BX%7D_%7Bc1%7D%20%5C%5C%20%5Coverline%7BX%7D_%7Bc2%7D%20%5C%5C%20%5Cvdots%20%5C%5C%20%5Coverline%7BX%7D_%7Bcn_1%7D%20%5Cend%7Bbmatrix%7D%20%5Cend%7Baligned%7D

n1维子方程如下:

eq?%5Cdot%7B%5Coverline%7B%5Cmathbf%7Bx%7D%7D%7D_c%3D%5Coverline%7B%5Cmathbf%7BA%7D%7D_c%5Coverline%7B%5Cmathbf%7Bx%7D%7D_c&plus;%5Coverline%7B%5Cmathbf%7BB%7D%7D_c%5Cmathbf%7Bu%7D%5C%5C%5Cmathbf%7By%7D_c%3D%5Coverline%7B%5Cmathbf%7BC%7D%7D_c%5Coverline%7B%5Cmathbf%7Bx%7D%7D_c&plus;%5Cmathbf%7BEu%7D

是可控的,且与原动态方程有相同的传递函数矩阵。

eq?%5Cmathbf%7BG%7D%28s%29%3D%5Cmathbf%7BC%7D%28s%5Cmathbf%7BI%7D-%5Cmathbf%7BA%7D%29%5E%7B-1%7D%5Cmathbf%7BB%7D&plus;%5Cmathbf%7BE%7D%3D%5Cmathbf%7B%5Coverline%7BC%7D%7D_C%28s%5Cmathbf%7BI%7D-%5Cmathbf%7B%5Coverline%7BA%7D%7D_C%29%5E%7B-1%7D%5Cmathbf%7B%5Coverline%7BB%7D%7D_C&plus;%5Cmathbf%7BE%7D

        变换矩阵的构造方法:

  1. 列写动态方程可控性矩阵U,其秩为n1。 eq?%5Cbegin%7Bbmatrix%7D%20%5Cmathbf%7BB%7D%20%26%20%5Cmathbf%7BAB%7D%20%26%20%5Ccdots%20%26%20%5Cmathbf%7BA%7D%5E%7Bn%5Cmathrm%7B~-%7D1%7D%5Cmathbf%7BB%7D%20%5Cend%7Bbmatrix%7D
  2. 从U中选取n1个线性无关的列向量。 eq?%5Cmathbf%7Bq%7D_1%2C%5Cmathbf%7Bq%7D_2%2C%5Ccdots%2C%5Cmathbf%7Bq%7D_%7Bn_1%7D 作为变换阵eq?%5Cmathbf%7BP%7D%5E%7B-1%7D的前n1列,再补充n-n1个n维的列向量eq?%5Cmathbf%7Bq%7D_%7Bn_1&plus;1%7D%5Ccdots%5Cmathbf%7Bq%7D_n,与前面的n1个列向量线性无关。并得到eq?%5Cmathbf%7BP%7D%5E%7B-1%7D%3D%20%5Cbegin%7Bbmatrix%7D%20%5Cmathbf%7Bq%7D_1%20%26%20%5Ccdots%20%26%20%5Cmathbf%7Bq%7D_%7Bn_1%7D%20%26%20%5Cmathbf%7Bq%7D_%7Bn_1&plus;1%7D%20%26%20%5Ccdots%5Cmathbf%7Bq%7D_n%20%26%20%5Cend%7Bbmatrix%7D

  3. eq?%5Cbegin%7Baligned%7D%20%26%20%5Cbar%7B%5Cmathbf%7BA%7D%7D%3D%5Cmathbf%7BPAP%7D%5E%7B-1%7D%20%5C%5C%20%26%20%5Cbar%7B%5Cmathbf%7BB%7D%7D%3D%5Cmathbf%7BPB%7D%20%5C%5C%20%26%20%5Cbar%7B%5Cmathbf%7BC%7D%7D%3D%5Cmathbf%7BCP%7D%5E%7B-1%7D%20%5C%5C%20%26%20%5Cbar%7B%5Cmathbf%7BE%7D%7D%3D%5Cmathbf%7BE%7D%20%5Cend%7Baligned%7D
    变换后的A阵左下角为零矩阵,对应的变换后的B阵下部分为零矩阵。

        可观性分解:n维时不变动态方程,若动态方程的可控性矩阵V的秩为n_2<n,则存在一个非奇异的常值矩阵P及等价变换eq?%5Cbar%7B%5Cboldsymbol%7Bx%7D%7D%3D%5Cmathbf%7BP%7D%5Cboldsymbol%7Bx%7D,将系统化为下列形式:

eq?%5Cbegin%7Baligned%7D%20%26%20%5Cdot%7B%5Coverline%7B%5Cmathbf%7Bx%7D%7D%7D%3D%20%5Cbegin%7Bbmatrix%7D%20%5Coverline%7B%5Cmathbf%7BA%7D%7D_o%20%26%20%5Cmathbf%7B0%7D%20%5C%5C%20%5Coverline%7B%5Cmathbf%7BA%7D%7D_%7B21%7D%20%26%20%5Coverline%7B%5Cmathbf%7BA%7D%7D_%7B%5Coverline%7Bo%7D%7D%20%5Cend%7Bbmatrix%7D%5Coverline%7B%5Cmathbf%7Bx%7D%7D&plus;%20%5Cbegin%7Bbmatrix%7D%20%5Coverline%7B%5Cmathbf%7BB%7D%7D_o%20%5C%5C%20%5Coverline%7B%5Cmathbf%7BB%7D%7D_%7B%5Coverline%7Bo%7D%7D%20%5Cend%7Bbmatrix%7D%5Cmathbf%7Bu%7D%20%5C%5C%20%26%20%5Cmathbf%7By%7D%3D%5B%5Coverline%7B%5Cmathbf%7BC%7D%7D_o%5Cquad%5Cmathbf%7B0%7D%5D%5Coverline%7B%5Cmathbf%7Bx%7D%7D&plus;%5Cmathbf%7BE%7D%5Cmathbf%7Bu%7D%20%5Cend%7Baligned%7D

n2维子方程

eq?%5Cdot%7B%5Coverline%7B%5Cmathbf%7Bx%7D%7D%7D_o%3D%5Coverline%7B%5Cmathbf%7BA%7D%7D_o%5Coverline%7B%5Cmathbf%7Bx%7D%7D_o&plus;%5Coverline%7B%5Cmathbf%7BB%7D%7D_o%5Cmathbf%7Bu%7D%5C%5C%5Cmathbf%7By%7D_o%3D%5Coverline%7B%5Cmathbf%7BC%7D%7D_o%5Coverline%7B%5Cmathbf%7Bx%7D%7D_o&plus;%5Cmathbf%7BE%7D%5Cmathbf%7Bu%7D

是可观的,且与原系统有相同的传递函数矩阵。

        

变换矩阵的构造方法:

  1. 列写动态方程可控性矩阵V,其秩为n2。 
     
  2. 从U中选取n2个线性无关的行向量。 eq?%5Cmathbf%7Bq%7D_1%2C%5Cmathbf%7Bq%7D_2%2C%5Ccdots%2C%5Cmathbf%7Bq%7D_%7Bn_1%7D 作为变换阵eq?%5Cmathbf%7BP%7D的前n2行,再补充n-n2个n维的行向量eq?%5Cmathbf%7Bq%7D_%7Bn_1&plus;1%7D%5Ccdots%5Cmathbf%7Bq%7D_n,与前面的n2个列向量线性无关。并得到
    eq?%5Cmathbf%7BP%7D%3D%20%5Cbegin%7Bbmatrix%7D%20%5Cmathbf%7Bp%7D_1%20%5C%5C%20%5Cvdots%20%5C%5C%20%5Cmathbf%7Bp%7D_%7Bn_2%7D%20%5C%5C%20%5Cmathbf%7Bp%7D_%7Bn_2&plus;1%7D%20%5C%5C%20%5Cvdots%20%5C%5C%20%5Cmathbf%7Bp%7D_n%20%5Cend%7Bbmatrix%7D

  3. eq?%5Cbegin%7Baligned%7D%20%26%20%5Cbar%7B%5Cmathbf%7BA%7D%7D%3D%5Cmathbf%7BPAP%7D%5E%7B-1%7D%20%5C%5C%20%26%20%5Cbar%7B%5Cmathbf%7BB%7D%7D%3D%5Cmathbf%7BPB%7D%20%5C%5C%20%26%20%5Cbar%7B%5Cmathbf%7BC%7D%7D%3D%5Cmathbf%7BCP%7D%5E%7B-1%7D%20%5C%5C%20%26%20%5Cbar%7B%5Cmathbf%7BE%7D%7D%3D%5Cmathbf%7BE%7D%20%5Cend%7Baligned%7D
    变换后的A阵右上角为零矩阵,对应的变换后的C阵右部分为零矩阵。
    注意可控性分解的变换阵先凑出来eq?%5Cmathbf%7BP%7D%5E%7B-1%7D而可观性分解的变换阵先凑出来eq?%5Cmathbf%7BP%7D

b2586338c5e9493980de0635f9b11ba6.png

20e0408f78814839bc9efb6379b86cac.png

eq?%5Cmathbf%7BC%7D%28s%5Cmathbf%7BI%7D-%5Cmathbf%7BA%7D%29%5E%7B-1%7D%5Cmathbf%7BB%7D&plus;%5Cmathbf%7BE%7D%3D%5Cmathbf%7B%5Cbar%7BC%7D%7D_1%28s%5Cmathbf%7BI%7D-%5Cmathbf%7B%5Cbar%7BA%7D%7D_%7B11%7D%29%5E%7B-1%7D%5Cmathbf%7B%5Cbar%7BB%7D%7D_1&plus;%5Cmathbf%7BE%7D

十、不可简约的动态方程

        相同的传递函数矩阵可以存在不同维数的动态方程实现,不可简约的动态方程又称为最小阶动态方程。

        线性时不变动态方程是不可简约的充分必要条件是该动态方程是可控且可观测的。

十一、离散化线性系统保持可控性和可观测性的条件

ced9d46cbc544f5fa5ae76719da4b4c8.png

37b1da9154db432dbb88d03d29587955.png

33cfb0c5f5de4884b0b2d984a549e637.png

f435b2c5ce6d425b93b86deeef3cb6b3.png

4a5dc4ca7cd24ebfa3d2a3dd57e9da76.png

第四章 不可简约实现

知识与方法

4.1 系统实现的定义

        具有指定有理传递函数矩阵G(s)的线性时不变动态方程称为G(s)的实现。每个可实现的传递函数矩阵G(s)有无限多个线性时不变动态方程实现。
        具有最小可能维数的实现是既可控又可观测的动态方程称为不可简约实现或最小维数实现

4.2 正则有理矩阵的特征多项式和次数

650ab3952475407a9187d9f905a92773.png

单入单出系统只要满足A维数等于传函次数,就是最小实现,既能控又能观。

 

下面是多入多出的正则有理矩阵的情况:

        eq?%5Chat%7B%5Cmathbf%7BG%7D%7D%28s%29 的特征多项式:正则有理矩阵 eq?%5Chat%7B%5Cmathbf%7BG%7D%7D%28s%29 所有子式的最小公分母。(百度百科:G(s)的极点多项式:所有不恒为零的子式当化为不可简约形式后分母的首一最小公倍式。这个表述更准确,实际上是一个意思。)

(注意是所有子式,不是所有项,一阶子式是G(s)中的各项,二阶子式或更高阶要算行列式!)

        eq?%5Chat%7B%5Cmathbf%7BG%7D%7D%28s%29 的次数:eq?%5Chat%7B%5Cmathbf%7BG%7D%7D%28s%29特征多项式的次数,记作eq?%5Cdelta%20%5Chat%7B%5Cmathbf%7BG%7D%7D%28s%29

bca2958b75cb4b9190a2c68bd39ac860.png

多入多出系统要满足A维数等于G(s)特征多项式的次数eq?%5Cdelta%20%5Chat%7B%5Cmathbf%7BG%7D%7D%28s%29才是最小实现,既能控又能观

 

4.3 标准型及正则有理函数的不可简约实现

4.3.1 单变量系统的标准型

1.可控标准型实现:

eq?%5Cbegin%7Baligned%7D%20%26%20%5Cdot%7B%5Cmathbf%7Bx%7D%7D%3D%20%5Cbegin%7Bbmatrix%7D%200%20%26%201%20%26%200%20%26%200%20%26%200%20%5C%5C%200%20%260%20%26%201%20%26%20%26%200%20%5C%5C%20%5Cvdots%20%26%20%5Cvdots%20%26%20%5Cvdots%20%26%20%5Cddots%20%26%20%5Cvdots%20%5C%5C%200%20%26%200%20%26%200%20%26%200%20%26%201%20%5C%5C%20-a_n%20%26%20-a_%7Bn-1%7D%20%26%20-a_%7Bn-2%7D%20%26%20%5Ccdots%20%26%20-a_1%20%5Cend%7Bbmatrix%7D%5Cmathbf%7Bx%7D&plus;%20%5Cbegin%7Bbmatrix%7D%200%20%5C%5C%200%20%5C%5C%20%5Cvdots%20%5C%5C%200%20%5C%5C%201%20%5Cend%7Bbmatrix%7D%5Cboldsymbol%7Bu%7D%20%5C%5C%20%26%20y%3D%5Bb_n%5Cquad%20b_%7Bn-1%7D%5Cquad%5Ccdots%5Cquad%20b_2%5Cquad%20b_1%5D%5Cmathbf%7Bx%7D&plus;e%5Cboldsymbol%7Bu%7D%20%5Cend%7Baligned%7D

方程的传递函数:

eq?%5Chat%7Bg%7D%28s%29%3D%5Cfrac%7B%5Cbeta_1s%5E%7Bn-1%7D&plus;%5Cbeta_2s%5E%7Bn-2%7D&plus;%5Ccdots&plus;%5Cbeta_n%7D%7Bs%5En&plus;%5Calpha_1s%5E%7Bn-1%7D&plus;%5Ccdots&plus;%5Calpha_%7Bn-1%7Ds&plus;%5Calpha_n%7D&plus;e

传函分子系数倒过来写成C阵,分母系数(最高次幂前面不算)倒过来添负号构成A阵最后一行!

 

求可控标准型的方法:

方法一:先求变换矩阵P

  1. 计算可控性矩阵 eq?%5Cmathbf%7BU%3D%7D%5B%5Cmathbf%7Bb%7D%5Cmathrm%7B~Ab%7D%5Ccdots%5Cmathbf%7BA%7D%5E%7Bn-1%7D%5Cmathbf%7Bb%7D%5D
  2. 计算 eq?%5Cmathbf%7BU%7D%5E%7B-1%7D,并记其最后一行为 eq?%5Cboldsymbol%7Bh%7D
  3. 给出变换阵:

eq?%5Cmathbf%7BP%7D%3D%20%5Cbegin%7Bbmatrix%7D%20%5Cmathbf%7Bh%7D%20%5C%5C%20%5Cmathbf%7Bh%7D%5Cmathbf%7BA%7D%20%5C%5C%20%5Cmathbf%7Bh%7D%5Cmathbf%7BA%7D%5E2%20%5C%5C%20%5Cdots%20%5C%5C%20%5Cmathbf%7Bh%7D%5Cmathbf%7BA%7D%5E%7Bn-1%7D%20%5Cend%7Bbmatrix%7D_%7Bn%5Ctimes%20n%7D

eq?%5Cbegin%7Baligned%7D%20%26%20%5Cbar%7B%5Cmathbf%7BA%7D%7D%3D%5Cmathbf%7BPAP%7D%5E%7B-1%7D%20%5C%5C%20%26%20%5Cbar%7B%5Cmathbf%7BB%7D%7D%3D%5Cmathbf%7BPB%7D%20%5C%5C%20%26%20%5Cbar%7B%5Cmathbf%7BC%7D%7D%3D%5Cmathbf%7BCP%7D%5E%7B-1%7D%20%5C%5C%20%26%20%5Cbar%7B%5Cmathbf%7BE%7D%7D%3D%5Cmathbf%7BE%7D%20%5Cend%7Baligned%7D

方法二:先求变换阵eq?%5Cmathbf%7BP%7D%5E%7B-1%7D

eq?%5Cmathbf%7BP%7D%5E%7B-1%7D%3D%5B%5Cmathbf%7Bb%7D~%5Cmathbf%7BA%7D%5Cmathbf%7Bb%7D~%5Ccdots~%5Cmathbf%7BA%7D%5E%7Bn-1%7D%5Cmathbf%7Bb%7D%5D%20%5Cbegin%7Bbmatrix%7D%20%5Calpha_%7Bn-1%7D%20%26%20%5Calpha_%7Bn-2%7D%20%26%20%5Ccdots%20%26%20a_1%20%26%201%20%5C%5C%20%5Calpha_%7Bn-2%7D%20%26%20%5Calpha_%7Bn-3%7D%20%26%20%5Ccdots%20%26%201%20%26%200%20%5C%5C%20%5Cvdots%20%26%20%5Cvdots%26%20%5Cvdots%26%20%5Cvdots%20%26%20%5Cvdots%20%5C%5C%20%5Calpha_1%20%26%201%20%26%20%5Ccdots%20%26%200%26%200%5C%5C%201%20%26%200%20%26%20%5Ccdots%260%20%26%200%20%5Cend%7Bbmatrix%7D%3D%5B%5Cmathbf%7Bq%7D_1~%5Cmathbf%7Bq%7D_2~%5Ccdots~%5Cmathbf%7Bq%7D_n%5D

eq?det%28s%5Cmathbf%7BI%7D-%5Cmathbf%7BA%7D%29%3Ds%5En&plus;a_1s%5E%7Bn-1%7D&plus;a_2s%5E%7Bn-2%7D&plus;%5Ccdots&plus;a_n

变换阵是唯一的!

做把系统状态方程化可控标准型的题时,先判断系统可控性。

2.可观标准型实现:

eq?%5Cbegin%7Baligned%7D%20%26%20%5Cdot%7B%5Cmathbf%7Bx%7D%7D%3D%20%5Cbegin%7Bbmatrix%7D%200%20%26%200%20%26%20%5Ccdots%20%26%200%20%26%20-a_n%20%5C%5C%201%20%26%200%20%26%20%5Ccdots%20%26%200%20%26%20-a_%7Bn-1%7D%20%5C%5C%200%20%26%201%20%26%20%5Ccdots%20%26%200%20%26%20-a_%7Bn-2%7D%20%5C%5C%20%5Cvdots%20%26%20%5Cvdots%20%26%20%5Cvdots%20%26%20%5Cvdots%20%26%20%5Cvdots%20%5C%5C%200%20%26%200%20%26%20%5Ccdots%26%201%20%26%20-a_1%20%5Cend%7Bbmatrix%7D&plus;%20%5Cbegin%7Bbmatrix%7D%20b_n%20%5C%5C%20b_%7Bn-1%7D%20%5C%5C%20b_%7Bn-2%7D%20%5C%5C%20%5Cvdots%20%5C%5C%20b_1%20%5Cend%7Bbmatrix%7D%5Cboldsymbol%7Bu%7D%20%5C%5C%20%26%20y%3D%5B0%5Cquad0%5Cquad%5Ccdots%5Cquad0%5Cquad1%5D%5Cmathbf%7Bx%7D&plus;eu%20%5Cend%7Baligned%7D

求可观测标准型的方法:

  1. 计算可观测形矩阵V,若系统可观测,可以化为可观测标准型。
  2. 写出原系统对偶系统:
    eq?%5Cdot%7B%5Cmathbf%7Bx%7D%7D%3D%5Cmathbf%7BA%7D%5Cmathbf%7Bx%7D&plus;%5Cmathbf%7Bb%7Du%2C%5Cquad%20y%3D%5Cmathbf%7Bc%7D%5Cmathbf%7Bx%7D%5Cquad%28%5Cmathbf%7BI%7D%29%5C%5C%5Cdot%7B%5Cmathbf%7Bz%7D%7D%3D%5Cmathbf%7BA%7D%5ET%5Cmathbf%7Bz%7D&plus;%5Cmathbf%7Bc%7D%5ET%5Cboldsymbol%7B%5Cnu%7D%2C%5Cquad%5Cmathbf%7Bw%7D%3D%5Cmathbf%7Bb%7D%5ET%5Cmathbf%7Bz%7D%5Cquad%28%5Cmathbf%7BII%7D%29
  3. 对系统Ⅱ,求将其化为可控标准型的变换阵P
    eq?%5Cmathbf%7B%5Cbar%7BA%7D%7D_1%3D%5Cmathbf%7BPA%7D%5ET%5Cmathbf%7BP%7D%5E%7B-1%7D%2C%5Cquad%5Cmathbf%7B%5Cbar%7Bb%7D%7D_1%3D%5Cmathbf%7BPc%7D%5ET%5Cquad%2C%5Cquad%5Cmathbf%7B%5Cbar%7Bc%7D%7D_1%3D%5Cmathbf%7Bb%7D%5ET%5Cmathbf%7BP%7D%5E%7B-1%7D
    对偶系统的可控标准型的A阵转置处理,b阵转置放到c的位置,c阵转置放到b的位置,就得到了原系统的可观标准型。
  4. (另外一法)令 eq?%5Cmathbf%7BM%7D%3D%5Cmathbf%7BP%7D%5ET,则 eq?%5Cmathbf%7B%5Cbar%7BA%7D%7D%3D%5Cmathbf%7BM%7D%5E%7B-1%7D%5Cmathbf%7BA%7D%5Cmathbf%7BM%7D~~~~%5Cmathbf%7B%5Cbar%7Bb%7D%7D%3D%5Cmathbf%7BM%7D%5E%7B-1%7D%5Cmathbf%7Bb%7D~~~~%5Cmathbf%7B%5Cbar%7Bc%7D%7D%3D%5Cmathbf%7Bc%7D%5Cmathbf%7BM%7D

 

4.3.2 多变量系统的标准型

Luenberger(第二)可控标准型

(ps.还有Luenberger伦博格第一标准型、Wonham(第二)可控标准型和Wonham(第一)可控标准型,这里不做介绍,可查阅资料了解)

长什么样?

960ee369e91849b1835b94332b6451f0.png

60107567da8e4c6d808c27752454a3b5.png

1387252417e94211a2d70d4cab4d8d59.png

p是多入多出系统输入的个数,也就是B阵的列数

 

怎样将多变量系统的动态方程化为伦博格第二可控标准型?

  1. 不失一般性,假设 eq?%5Cmathbf%7BB%3D%7D%5B%5Cmathbf%7Bb%7D_1%5Cmathbf%7Bb%7D_2%2C%5Cldots%5Cldots%5Cmathbf%7Bb%7D_p%5D 列满秩;
  2. 列出可控性矩阵
    eq?%5Cmathbf%7BU%7D%3D%5B%5Cunderbrace%7B%5Cmathbf%7Bb%7D_1~%5Cmathbf%7Bb%7D_2%5Ccdots%5Cmathbf%7Bb%7D_p%7D_%5Cmathbf%7BB%7D%5Cunderbrace%7B~%5Cmathbf%7BA%7D%5Cmathbf%7Bb%7D_1~%5Cmathbf%7BA%7D%5Cmathbf%7Bb%7D_2%5Ccdots%5Cmathbf%7BA%7D%5Cmathbf%7Bb%7D_p%7D_%5Cmathbf%7BAB%7D%5Ccdots%5Cunderbrace%7B%5Cmathbf%7BA%7D%5E%7Bn-1%7D%5Cmathbf%7Bb%7D_1~%5Cmathbf%7BA%7D%5E%7Bn-1%7D%5Cmathbf%7Bb%7D_2%5Ccdots%5Cmathbf%7BA%7D%5E%7Bn-1%7D%5Cmathbf%7Bb%7D_p%7D_%5Cmathbf%7BA%5E%7Bn-1%7D%5Cmathbf%7BB%7D%7D%5D
    按照上面的排列顺序,自左向右挑选出n个线性无关向量,再重新排列如下:
    eq?%5Cunderbrace%7B%5Cmathbf%7Bb%7D_%7B1%7D~%5Cmathbf%7BA%7D%5Cmathbf%7Bb%7D_%7B1%7D%5Ccdots%5Cmathbf%7BA%7D%5E%7B%5Cmu%20_%7B1%7D-1%7D%5Cmathbf%7Bb%7D_%7B1%7D%7D_%5Cmathbf%7Bb_1%7D~%5Cunderbrace%7B%5Cmathbf%7Bb%7D_%7B2%7D~%5Cmathbf%7BA%7D%5Cmathbf%7Bb%7D_%7B2%7D%5Ccdots%5Cmathbf%7BA%7D%5E%7B%5Cmu%20_%7B2%7D-1%7D%5Cmathbf%7Bb%7D_%7B2%7D%7D_%5Cmathbf%7Bb_2%7D%5Ccdots%5Cunderbrace%7B%5Cmathbf%7Bb%7D_%7Bp%7D~%5Cmathbf%7BA%7D%5Cmathbf%7Bb%7D_%7Bp%7D%5Ccdots%5Cmathbf%7BA%7D%5E%7B%5Cmu%20_P-1%7D%5Cmathbf%7Bb%7D_%7Bp%7D%7D_%5Cmathbf%7Bb_p%7D
    显然有
     eq?%5Cmu%20_1&plus;%5Cmu%20_2&plus;%5Ccdots&plus;%5Cmu%20_p%3Dn
    (注意:若某一向量,例如eq?%5Cmathbf%7BAb%7D_2可由eq?%5Cmathbf%7Bb%7D_1%2C%5Cmathbf%7Bb%7D_2%2C%5Ccdots%2C%5Cmathbf%7Bb%7D_%5Cmathrm%7Bp%7D%2C%5Cmathbf%7BA%7D%5Cmathbf%7Bb%7D_1线性表出,即
    eq?%5Cmathbf%7BAb%7D_2%3Da_1%5Cmathbf%7Bb%7D_1&plus;a_2%5Cmathbf%7Bb%7D_2&plus;%5Ccdots&plus;a_p%5Cmathbf%7Bb%7D_p&plus;a_%7Bp&plus;1%7D%5Cmathbf%7BAb%7D_1
    则所有eq?%5Cmathbf%7BA%7D%5Ek%5Cmathbf%7Bb%7D_2%2Ck%5Cgeq%201均不会被选到。因为它们都可以由eq?%5Cmathbf%7Bb%7D_1%2C%5Cmathbf%7Bb%7D_2%2C%5Ccdots%2C%5Cmathbf%7Bb%7D_%5Cmathrm%7Bp%7D%2C%5Cmathbf%7BA%7D%5Cmathbf%7Bb%7D_1线性表出)

  3. eq?%5Cmathbf%7BP%7D_1%5E%7B-1%7D%3D%5B%5Cunderbrace%7B%5Cmathbf%7Bb%7D_1%5Cmathbf%7B~Ab%7D_1%5Ccdots%5Cmathbf%7BA%7D%5E%7B%5Cmu%20_1-1%7D%5Cmathbf%7Bb%7D_1%7D_%7B%5Cmu_1%7D%5Cunderbrace%7B%5Cmathbf%7Bb%7D_2%5Cmathbf%7B~Ab%7D_2%5Ccdots%5Cmathbf%7BA%7D%5E%7B%5Cmu_2-1%7D%5Cmathbf%7Bb%7D_2%7D_%7B%5Cmu_2%7D%5Ccdots%5Cunderbrace%7B%5Cmathbf%7Bb%7D_p%5Cmathbf%7B~Ab%7D_p%5Ccdots%5Cmathbf%7BA%7D%5E%7B%5Cmu_p-1%7D%5Cmathbf%7Bb%7D_p%7D_%7B%5Cmu_p%7D%5D
  4. 求出 eq?%5Cmathbf%7BP%7D_1,以 eq?%5Cmathbf%7Bh%7D_i 表示 eq?%5Cmathbf%7BP%7D_1 阵的第 eq?%5Cmu_1eq?%5Cmu_1&plus;%5Cmu_2、…及  eq?%5Csum_%7B1%7D%5E%7Bp%7D%5Cmu_i 行

    构造变换阵:
    18ad1bd64e3b48c6a0535b66d35e8715.png
    65d4fa4a003f44eb88e8a393b6532628.png
  5. 取非奇异变换 eq?%5Coverline%7Bx%7D%3D%5Cmathbf%7BP%7D_2x,就可得到 eq?%5Cmathbf%7B%5Coverline%7BA%7D%7D%3D%5Cmathbf%7BP%7D_2%5Cmathbf%7BA%7D%5Cmathbf%7BP%7D_2%5E%7B-1%7D%2C%5Cmathbf%7B%5Coverline%7BB%7D%7D%3D%5Cmathbf%7BP%7D_2%5Cmathbf%7BB%7D%2C%5Cmathbf%7B%5Coverline%7BC%7D%7D%3D%5Cmathbf%7BC%7D%5Cmathbf%7BP%7D_2%5E%7B-1%7D

4.3.3 正则有理传递函数的最小实现

问题描述:给定有理函数:

eq?%5Cmathrm%7Bg%7D_0%28s%29%3D%5Cfrac%7Bes%5En&plus;e_%7Bn-1%7Ds%5E%7Bn-1%7D&plus;%5Ccdots&plus;e_1s&plus;e_0%7D%7Bs%5En&plus;a_1s%5E%7Bn-1%7D&plus;%5Ccdots&plus;a_%7Bn-1%7Ds&plus;a_n%7D

写出其最小实现

eq?%5Cbegin%7Baligned%7D%20%5Cdot%7B%5Cmathbf%7Bx%7D%7D%20%26%20%3D%5Cmathbf%7BAx%7D&plus;%5Cmathbf%7Bb%7Du%20%5C%5C%20y%20%26%20%3D%5Cmathbf%7Bcx%7D&plus;eu%20%5Cend%7Baligned%7D

        该式可分解为常数部分和严格正则部分,其中的 e 就是动态方程中的直接传递部分。

eq?g_0%28s%29%3De&plus;%5Cfrac%7B%5Cbeta_1s%5E%7Bn-1%7D&plus;%5Ccdots&plus;%5Cbeta_%7Bn-1%7Ds&plus;%5Cbeta_n%7D%7Bs%5En&plus;a_1s%5E%7Bn-1%7D&plus;%5Ccdots&plus;a_%7Bn-1%7Ds&plus;a_n%7D

所以,只需讨论其严格正则有理分式部分。要求寻找 eq?%5Cmathbf%7BA%2Cb%2Cc%7D,使得满足严格正则有理传函部分,且 A 的维数尽可能小。

 

1.可控标准型的最小阶实现

4e7a9f88a49c4366beca68d3e674af38.png

注意:

(1)上图中为可控标准型,故该实现一定可控。

(2)如果用于实现的g(s)中无零极点对消,则上图中的动态方程一定也可观,因为 eq?dim%28%5Cmathbf%7BA%7D%29%3Ddeg%28g%28s%29%29,此动态方程就是g(s)的最小阶动态方程实现。

2.可观测标准型的最小阶实现

f398615c27e94e76aa81c58fb5d47258.png

根据对偶原理,由g(s)的可控标准型可以直接得到可观标准型。对于可控和可观测标准型实现,只有当所给的eq?%5Cmathbf%7Bg%7D%28s%29%20%3D%5Cfrac%7BN%28s%29%7D%7BD%28s%29%7D是不可简约(即无零极点对消),所得实现才是不可简约的。

3.由汉克尔矩阵求传递函数的实现

(略)

由马尔可夫参数得到的汉克尔实现及约当型实现总是可控且可观的。

4.约当标准型实现

        设g(s)的分母D(s)可因式分解成一次因式的乘积。则通过部分分式分解,求得约当标准型的最小阶实现。

eq?%5Cbegin%7Baligned%7D%20%5Cmathbf%7Bg%7D%28s%29%20%26%20%3D%5Cfrac%7BN%28s%29%7D%7BD%28s%29%7D%20%5C%5C%20%26%20%3D%5Cfrac%7B%5Cbeta_1s%5E%7Bn-1%7D&plus;%5Ccdots&plus;%5Cbeta_%7Bn-1%7Ds&plus;%5Cbeta_n%7D%20%7Bs%5En&plus;a_1s%5E%7Bn-1%7D&plus;%5Ccdots&plus;a_%7Bn-1%7Ds&plus;a_n%7D%20%5C%5C%20%26%20%3D%5Cfrac%7BN%28s%29%7D%7B%28s-%5Clambda_1%29%5E%7B%5Cmu_1%7D%28s-%5Clambda_2%29%5E%7B%5Cmu_2%7D%28s-%5Clambda_3%29%5E%7B%5Cmu_3%7D%5Ccdots%28s-%5Clambda_m%29%5E%7B%5Cmu_m%7D%7D%5Cend%7Baligned%7D

实现步骤:

  1. 设g(s)的分母D(s)可因式分解成一次因式的乘积形式
    eq?D%28s%29%3D%28s-%5Clambda_1%29%5E%7B%5Cmu_1%7D%28s-%5Clambda_2%29%5E%7B%5Cmu_2%7D%28s-%5Clambda_3%29%5E%7B%5Cmu_3%7D%5Ccdots%28s-%5Clambda_m%29%5E%7B%5Cmu_m%7D
    其中,eq?%5Clambda%20_1%2C%5Clambda%20_2%5Ccdots%20%5Clambda%20_m为相异特征值。
  2. 设g(s)通过部分分式展开为:
    eq?%5Cbegin%7Baligned%7D%20%5Cmathbf%7Bg%7D%28s%29%20%26%20%3D%5Cfrac%7BN%28s%29%7D%7B%28s-%5Clambda_1%29%5E%7B%5Cmu_1%7D%28s-%5Clambda_2%29%5E%7B%5Cmu_2%7D%28s-%5Clambda_3%29%5E%7B%5Cmu_3%7D%5Ccdots%28s-%5Clambda_m%29%5E%7B%5Cmu_m%7D%7D%20%5C%5C%20%26%20%3D%5Cfrac%7Be_%7B11%7D%7D%7B%28s-%5Clambda_1%29%5E%7B%5Cmu_1%7D%7D&plus;%5Cfrac%7Be_%7B12%7D%7D%7B%28s-%5Clambda_1%29%5E%7B%5Cmu_1-1%7D%7D&plus;%5Ccdots&plus;%5Cfrac%7Be_%7B1%5Cmu_1%7D%7D%7Bs-%5Clambda_1%7D%20%5C%5C%20%26%20&plus;%5Cfrac%7Be_%7B21%7D%7D%7B%5Cleft%28s-%5Clambda_2%5Cright%29%5E%7B%5Cmu_2%7D%7D&plus;%5Cfrac%7Be_%7B22%7D%7D%7B%5Cleft%28s-%5Clambda_2%5Cright%29%5E%7B%5Cmu_2-1%7D%7D&plus;%5Ccdots&plus;%5Cfrac%7Be_%7B2%5Cmu_2%7D%7D%7Bs-%5Clambda_2%7D%20%5C%5C%20%26%20&plus;%5Cldots%20%5C%5C%20%26%20&plus;%5Cfrac%7Be_%7Bm1%7D%7D%7B%5Cleft%28s-%5Clambda_m%5Cright%29%5E%7B%5Cmu_m%7D%7D&plus;%5Cfrac%7Be_%7Bm2%7D%7D%7B%5Cleft%28s-%5Clambda_m%5Cright%29%5E%7B%5Cmu_m-1%7D%7D&plus;%5Ccdots&plus;%5Cfrac%7Be_%7Bm%5Cmu_m%7D%7D%7Bs-%5Clambda_m%7D%20%5Cend%7Baligned%7D
  3. 可得约当标准型最小实现
    0ce6df341ef54b2a8c823e6e36ba6860.png

例题:

1507cbbfaf7b49f9b76244f46c19559d.png

3b9982b5812a415eba594877dc278021.png

4.4 多变量系统的实现

4.4.1 动态方程的可控、可观性与传递函数矩阵之间的关系

        设已知多变量系统动态方程:

eq?%5Cbegin%7Baligned%7D%20%26%20%5Cdot%7B%5Cmathbf%7Bx%7D%7D%3D%5Cmathbf%7BAx%7D&plus;%5Cmathbf%7BBu%7D%20%5C%5C%20%26%20%5Cmathbf%7By%7D%3D%5Cmathbf%7BCx%7D%20%5Cend%7Baligned%7D

其中,A,B,C分别是 eq?n%5Ctimes%20n%2Cn%5Ctimes%20p%2Cq%5Ctimes%20n的实常量矩阵。

        求其传递函数矩阵

eq?%5Cmathbf%7BG%7D%28s%29%3D%5Cfrac%7B%5Cmathbf%7BC%7Dadj%28s%5Cmathbf%7BI%7D-%5Cmathbf%7BA%7D%29%5Cmathbf%7BB%7D%7D%7B%5Cdet%28s%5Cmathbf%7BI%7D-%5Cmathbf%7BA%7D%29%7D

式中 eq?%5CDelta%28s%29%7B%3D%7D%5Cdet%28s%5Cmathbf%7BI%7D%7B-%7D%5Cmathbf%7BA%7D%29 称为系统的特征多项式。传递函数矩阵 eq?%5Cmathbf%7BG%7D%28s%29 是一个严格正则有理函数阵。

        定理:若 eq?%5CDelta%28s%29 与 eq?%5Cmathbf%7BC%7Dadj%28s%5Cmathbf%7BI%7D-%5Cmathbf%7BA%7D%29%5Cmathbf%7BB%7D (中的每一项)无非常数的公因式,则系统 eq?%5Cleft%20%28%20%5Cmathbf%7BA%7D%2C%5Cmathbf%7BB%7D%2C%5Cmathbf%7BC%7D%20%5Cright%20%29 是可控和可观测的。并且这仅仅是系统可控可观的充分条件而不是必要条件。

        定理:系统可控可观测的充分必要条件是 eq?%5Cmathbf%7BG%7D%28s%29 的极点多项式等于 的特征多项式,即

eq?%5Cphi%28s%29%3D%5Cdet%28s%5Cmathbf%7BI-A%7D%29

4.4.2 向量传递函数的实现

        一个元素为多项式的矩阵,总可以写成矩阵为系数的多项式。

356ea2547f28495291d3e9800c626154.png

25bfc13b2cde40ed8b5b091e7e8fd214.png

4.4.2.1 1×p行向量传递函数矩阵的实现——行分母展开时,得可观测标准型最小实现

        考虑严格正则传递矩阵:

eq?%5Cmathbf%7BG%7D%28s%29%3D%20%5Cbegin%7Bbmatrix%7D%20%5Cfrac%7Bn_1%28s%29%7D%7Bd_1%28s%29%7D%20%26%20%5Cfrac%7Bn_2%28s%29%7D%7Bd_2%28s%29%7D%20%26%20%5Ccdots%20%26%20%5Cfrac%7Bn_p%28s%29%7D%7Bd_p%28s%29%7D%20%5Cend%7Bbmatrix%7D_%7B1%5Ctimes%20p%7D

(1)多入单出系统,其中各元均互质。

(2)eq?%5Cmathbf%7BG%7D%28s%29的特征多项式(极点多项式)即为各元分母多项式的首一最小公分母。

eq?d%28s%29%3Ds%5En&plus;a_1s%5E%7Bn-1%7D&plus;a_2s%5E%7Bn-2%7D&plus;%5Ccdots&plus;a_n

eq?%5Cmathbf%7BG%7D%28s%29可表示为:

eq?%5Cmathbf%7BG%7D%28s%29%7B%3D%7D%5Cfrac%7B1%7D%7Bd%28s%29%7D%7B%20%5Cbegin%7Bbmatrix%7D%20%5Coverline%7Bn%7D_1%28s%29%20%26%20%5Coverline%7Bn%7D_2%28s%29%20%26%20%5Ccdots%20%26%20%5Coverline%7Bn%7D_p%28s%29%20%5Cend%7Bbmatrix%7D%7D

进而写成如下格式:注意eq?%5Cmathbf%7BB%7D_O阵是倒着写的,即eq?s%5E%7Bn-1%7D前面的行向量写在了eq?%5Cmathbf%7BB%7D_O阵最下面一行。

d0128e2573544641a18b5015cf7e431e.png

6606aea418ac4abd972bc60cc9fdf74b.png

4.4.2.2 q×1列向量传递函数矩阵的实现——列分母展开时,得可控标准型最小实现

        考虑严格正则传递矩阵

eq?%5Cmathbf%7BG%7D%28s%29%3D%20%5Cbegin%7Bbmatrix%7D%20%5Cfrac%7Bn_1%28s%29%7D%7Bd_1%28s%29%7D%20%5C%5C%20%5Cfrac%7Bn_2%28s%29%7D%7Bd_2%28s%29%7D%20%5C%5C%20%5Cvdots%20%5C%5C%20%5Cfrac%7Bn_q%28s%29%7D%7Bd_q%28s%29%7D%20%5Cend%7Bbmatrix%7D_%7Bq%5Ctimes1%7D

(1)单入多出系统,其中各元均互质。

(2)eq?%5Cmathbf%7BG%7D%28s%29的特征多项式(极点多项式)即为各元分母多项式的首一最小公分母。

eq?d%28s%29%3Ds%5En&plus;a_1s%5E%7Bn-1%7D&plus;a_2s%5E%7Bn-2%7D&plus;%5Ccdots&plus;a_n

eq?%5Cmathbf%7BG%7D%28s%29可表示为:

eq?%5Cmathbf%7BG%7D%28s%29%7B%3D%7D%5Cfrac%7B1%7D%7Bd%28s%29%7D%7B%20%5Cbegin%7Bbmatrix%7D%20%5Coverline%7Bn%7D_1%28s%29%20%26%20%5Coverline%7Bn%7D_2%28s%29%20%26%20%5Ccdots%20%26%20%5Coverline%7Bn%7D_q%28s%29%20%5Cend%7Bbmatrix%7D%7D%5ET

进而写成如下格式:注意eq?%5Cmathbf%7BC%7D_C阵是倒着写的,即eq?s%5E%7Bn-1%7D前面的列向量写在了eq?%5Cmathbf%7BC%7D_C阵最下后一列。

de83db709ca44a7c84980f3119ac2333.png

84d19e24e7f64e81a6259df8e7fe1fec.png

传递函数矩阵为列和行向量时的最小实现总结:

各元素既约条件下,它们的首一最小公分母就是G(s)特征多项式。

G(s)为列向量(单入)则可实现为可控标准型

G(s)为行向量(单出)则可实现为可观标准型

4.4.3 q×p传递函数矩阵eq?%5Cmathbf%7BG%7D%28s%29的实现

4.4.3.1 按列展开(求得可控标准型)

        q×p的G(s)矩阵,可表示成p个q×1的列向量,则可按照q×1列向量传递函数矩阵的列分母展开法,分别求得可控标准型最小实现。

f05cec954ae1475cbf90f1be16fe00ab.png

eq?%5Cbegin%7Baligned%7D%20%26%20%5Cmathbf%7B%5Cbar%7BG%7D%7D_j%28s%29%5Ctriangleq%20%5Cbegin%7Bbmatrix%7D%20g_%7B1j%7D%28s%29%20%5C%5C%20g_%7B2j%7D%28s%29%20%5C%5C%20%5Cvdots%20%5C%5C%20g_%7Bqj%7D%28s%29%20%5Cend%7Bbmatrix%7D_%7Bq%5Ctimes1%7D%20%5C%5C%20%26%20j%3D1%2C2...%2Cp%20%5Cend%7Baligned%7D

b5fd87e33e18490e9222b7b73f082df9.png

1e3ef6cc56b54d8db5a098d47f7b68a0.png

4.4.3.2 按行展开(求得可观测标准型)

        q×p的G(s)矩阵,可表示成q个1×p的列向量,则可按照1×p列向量传递函数矩阵的行分母展开法,分别求得可观测标准型最小实现。

217805ac1f5e4f79bdaca91e9c356640.png

eq?%5Cbegin%7Baligned%7D%20%26%20%5Cmathbf%7BG%7D_i%28s%29%3D%20%5Cbegin%7Bbmatrix%7D%20g_%7Bi1%7D%28s%29%20%26%20g_%7Bi2%7D%28s%29%20%26%20%5Ccdots%20%26%20g_%7Bip%7D%28s%29%20%5Cend%7Bbmatrix%7D_%7B1%5Ctimes%20p%7D%20%5C%5C%20%26%20i%3D1%2C2...%2Cq%20%5Cend%7Baligned%7D

0d69bba11cbc459494adeebf0d6a7f97.png

ca124ed9a08b42f79dadd933de5bcc09.png

如果不论行展开或列展开都不能得到最小阶实现,可以利用可控性分解或可观性分解进一步降低系统的阶次。

7932e74c7662461ca1d25f742e5eeff2.jpeg

4.4.3.3 按约当型展开

(略)

第五章 状态反馈及状态观测器的设计

知识与方法

        对一个系统(对象)和一个期望信号(参考信号),其控制问题就是求出控制信号(驱动信号),使得对象的输出尽可能地接近参考信号。

        若控制信号事先给定,并不依赖于对象地实际响应,则称这种控制为开环控制。当系统中存在扰动或变化时,这种类型地控制是不能令人满意。若控制信号依赖于系统的实际响应,则这种控制称为反馈控制

        反馈的基本类型分为状态反馈输出反馈。由于系统的状态含有系统的全部基本信息,因此,若将控制信号设计成为状态与参考信号的函数,便可得到相当好的控制效果。输出反馈是以系统输出作为反馈变量的一类反馈形式。

5.1 状态反馈

5.1.1 状态反馈对系统可控性、可观测性的影响

 1.状态反馈不改变系统的可控性。

        系统动态方程:eq?%5Cdot%7B%5Cmathbf%7Bx%7D%7D%3D%5Cmathbf%7BA%7D%5Cmathbf%7Bx%7D&plus;%5Cmathbf%7BB%7D%5Cmathbf%7Bu%7D%2C~%5Cmathbf%7By%7D%3D%5Cmathbf%7BCx%7D

        引入线性反馈控制律为:eq?%5Cmathbf%7Bu%3Dr&plus;Kx%7D

式中r是参考输入,K称为反馈增益矩阵,它是一个p×n的矩阵。

b1371ac6bd04410886391730af72e869.png

eq?%5Cmathbf%7Bu%3Dr&plus;Kx%7D代入状态方程后得到

eq?%5Cbegin%7Baligned%7D%20%26%20%5Cdot%7B%5Cmathbf%7Bx%7D%7D%3D%5Cmathbf%7BAx%7D&plus;%5Cmathbf%7BBu%7D%3D%28%5Cmathbf%7BA%7D&plus;%5Cmathbf%7BBK%7D%29%5Cmathbf%7Bx%7D&plus;%5Cmathbf%7BBr%7D%20%5C%5C%20%26%20%5Cmathbf%7By%7D%3D%5Cmathbf%7BCx%7D%20%5Cend%7Baligned%7D

式中A+BK为闭环系统的系统矩阵。

        状态反馈不影响可控性,但可以用来控制动态方程的特征值。

2.状态反馈可能改变系统的可观测性。

5.1.2 输出反馈以及输出反馈与状态反馈的比较

1.输出反馈

        系统的动态方程:eq?%5Cdot%7B%5Cmathbf%7Bx%7D%7D%3D%5Cmathbf%7BA%7D%5Cmathbf%7Bx%7D&plus;%5Cmathbf%7BB%7D%5Cmathbf%7Bu%7D%2C~%5Cmathbf%7By%7D%3D%5Cmathbf%7BCx%7D

        引入输出反馈控制 F 到控制系统的输入端,v 为系统参考输入,此时系统的控制率为:

eq?%5Cmathbf%7Bu%7D%3D%5Cmathbf%7Bv%7D&plus;%5Cmathbf%7BF%7D%5Cmathbf%7By%7D

28fa6c4cdae74d14b6ad7d2fc0233297.png

        引入输出反馈后的闭环系统状态空间表达式为:(将eq?%5Cmathbf%7Bu%3Dv&plus;Fy%3Dv&plus;FCx%7D代入状态方程整理得到)

eq?%5Cbegin%7Baligned%7D%20%26%20%5Cdot%7B%5Cmathbf%7Bx%7D%7D%3D%5Cmathbf%7BAx%7D&plus;%5Cmathbf%7BBu%7D%3D%28%5Cmathbf%7BA%7D&plus;%5Cmathbf%7BBFC%7D%29%5Cmathbf%7Bx%7D&plus;%5Cmathbf%7BBv%7D%20%5C%5C%20%26%20%5Cmathbf%7By%7D%3D%5Cmathbf%7BCx%7D%20%5Cend%7Baligned%7D

对于连续线性时不变系统,输出反馈可保持原系统的可控性和可观测性。

2.状态反馈与输出反馈的比较

        1)状态反馈为系统结构信息的完全反馈,输出反馈则是系统结构信息的不完全反馈。

        2)对各类性能指标时间域系统综合问题上,几乎都要求采用状态反馈,表明状态反馈在功能上要远优于输出反馈。

        3)在物理实现上输出反馈更容易,解决状态反馈物理实现的途径是附加状态观测器。

5.1.3 单输入系统的极点配置(特征值配置)

        开环:eq?%5Cdot%7B%5Cmathbf%7Bx%7D%7D%3D%5Cmathbf%7BAx%7D&plus;%5Cmathbf%7Bbu%7D

        引入状态反馈律:eq?%5Cmathbf%7Bu%3Dr&plus;kx%7D

        闭环:eq?%5Cbegin%7Baligned%7D%20%26%20%5Cdot%7B%5Cmathbf%7Bx%7D%7D%3D%28%5Cmathbf%7BA%7D&plus;%5Cmathbf%7Bb%7D%5Cmathbf%7Bk%7D%29%5Cmathbf%7Bx%7D&plus;%5Cmathbf%7Bb%7D%5Cmathbf%7Br%7D%20%5C%5C%20%26%20%5Cmathbf%7BA%7D%5Cin%5Cmathbf%7BR%7D%5E%7Bn%5Ctimes%20n%7D%2C%5Cmathbf%7Bb%7D%5Cin%5Cmathbf%7BR%7D%5E%7Bn%5Ctimes1%7D%2C%5Cmathbf%7Bk%7D%5Cin%5Cmathbf%7BR%7D%5E%7B1%5Ctimes%20n%7D%20%5Cend%7Baligned%7D

        闭环系统的系统矩阵eq?%5Cmathbf%7BA%7D&plus;%5Cmathbf%7Bb%7D%5Cmathbf%7Bk%7D的特征值可以由状态反馈增益阵eq?%5Cmathbf%7Bk%7D配置到复平面的任意位置(复数共轭成对),其充分必要条件开环动态系统可控

求k阵的方法:

算法一:(显然不如算法二)

1)计算eq?%5Cmathbf%7BA%7D的特征多项式:

eq?%5Cdet%28s%5Cmathbf%7BI%7D-%5Cmathbf%7BA%7D%29%3Ds%5En&plus;%5Calpha_1s%5E%7Bn-1%7D&plus;%5Ccdots&plus;%5Calpha_%7Bn-1%7Ds&plus;%5Calpha_n

2)由所给的n个期望特征值eq?%5Clambda_1%2C%5Clambda_2%2C%5Ccdots%2C%5Clambda_n,计算期望的特征多项式为:

eq?%28s-%5Clambda_1%29%28s-%5Clambda_2%29%5Ccdots%28s-%5Clambda_n%29%3Ds%5En&plus;%5Cbar%7B%5Calpha%7D_1s%5E%7Bn-1%7D&plus;%5Ccdots&plus;%5Cbar%7B%5Calpha%7D_%7Bn-1%7Ds&plus;%5Cbar%7B%5Calpha%7D_n

3)求eq?%5Cbar%7B%5Cmathbf%7Bk%7D%7D(用原特征多项式系数减期望特征多项式系数,并且反过来排列):

eq?%5Cmathbf%7B%5Coverline%7Bk%7D%7D%3D%20%5Cbegin%7Bbmatrix%7D%20a_n-%5Coverline%7Ba%7D_n%20%26%20a_%7Bn-1%7D-%5Coverline%7Ba%7D_%7Bn-1%7D%20%26%20%5Ccdots%20%26%20a_2-%5Coverline%7Ba%7D_2%20%26%20a_1-%5Coverline%7Ba%7D_1%20%5Cend%7Bbmatrix%7D

4)计算可控标准型的坐标变换阵eq?%5Cmathbf%7BP%7D

eq?%5Cmathbf%7BP%7D%3D%20%5Cbegin%7Bbmatrix%7D%20%5Cmathbf%7Bh%7D%20%5C%5C%20%5Cmathbf%7Bh%7D%5Cmathbf%7BA%7D%20%5C%5C%20%5Cmathbf%7Bh%7D%5Cmathbf%7BA%7D%5E2%20%5C%5C%20%5Cvdots%20%5C%5C%20%5Cmathbf%7Bh%7D%5Cmathbf%7BA%7D%5E%7Bn-1%7D%20%5Cend%7Bbmatrix%7D

5)求出反馈增益阵eq?%5Cmathbf%7Bk%7D%3D%5Cmathbf%7B%5Cbar%7Bk%7D%7D%5Cmathbf%7BP%7D

算法二:直接求k算法:

1)设反馈增益矩阵eq?%5Cmathbf%7Bk%7D%3D%5Bk_1%2Ck_2%2C...%2Ck_n%5D

2)计算eq?det%28s%5Cmathbf%7BI-A-bk%7D%29。这个s的多项式的系数包含了待定的n个参数:

eq?%5Cdet%28s%5Cmathbf%7BI%7D-%5Cmathbf%7BA%7D-%5Cmathbf%7Bb%7D%5Cmathbf%7Bk%7D%29%3Ds%5En&plus;b_1%28%5Cmathbf%7Bk%7D%29s%5E%7Bn-1%7D&plus;b_2%28%5Cmathbf%7Bk%7D%29s%5E%7Bn-2%7D&plus;%5Ccdots&plus;b_n%28%5Cmathbf%7Bk%7D%29

3)将这个特征多项式与期望特征值比较,令s的同次幂的系数相等:

eq?%5Cbegin%7Baligned%7D%20%28s-%5Clambda_1%29%28s-%5Clambda_2%29%5Ccdots%28s-%5Clambda_n%29%26%3Ds%5En&plus;%5Cbar%7B%5Calpha%7D_1s%5E%7Bn-1%7D&plus;%5Ccdots&plus;%5Cbar%7B%5Calpha%7D_%7Bn-1%7Ds&plus;%5Cbar%7B%5Calpha%7D_n%5C%5C%26%20%3D%20det%28%20sI%20-%20A%20-%20bk%29%20%5C%5C%20%26%20%3Ds%5En&plus;%5Cbeta_1%28%5Cmathrm%7Bk%7D%29s%5E%7Bn-1%7D&plus;%5Cbeta_2%28%5Cmathrm%7Bk%7D%29s%5E%7Bn-2%7D&plus;%5Ccdots&plus;%5Cbeta_n%28%5Cmathrm%7Bk%7D%29%20%5Cend%7Baligned%7D

        解包含n个未知量eq?k_1%2Ck_2%2C...%2Ck_n的n个线性方程,在系统可控的条件下,由这个方程可唯一地确定出反馈增益向量eq?%5Cmathbf%7Bk%7D

 

        注意:对于单输入系统极点的“任意配置”来说,其充要条件就是系统可控。但对于某一组指定的特征值进行配置时,系统可控只是充分条件,而不是必要条件。给定极点组可用状态反馈达到配置的充分必要条件是给定极点组包含系统的不可控模态。

5.1.4 状态反馈对传递函数零点的影响

        引入状态反馈可移动极点的位置,一般来说不影响零点。但却存在这样的情形:经状态反馈后的极点恰与零点有对消,此时状态反馈不仅影响了零点,还造成被消掉的极点为不可观测模态(但仍可控)。这从另一个角度解释了为什么状态反馈有时会使系统失去可观测性。

5.1.5 多变量系统状态反馈

方法一:将多变量问题变换为单变量问题处理

        定理:若多变量系统eq?%5Cleft%20%28%20%5Cmathbf%7BA%2CB%7D%20%5Cright%20%29可控,且eq?%5Cmathbf%7BA%7D为循环的,则几乎对任意的p×1实向量eq?%5Cmathbf%7Bv%7D,单输入eq?%5Cleft%20%28%20%5Cmathbf%7BA%2CBv%7D%20%5Cright%20%29都是可控。

        循环矩阵:若矩阵eq?%5Cmathbf%7BA%7D的特征多项式等于其最小多项式,则称之为循环矩阵。若eq?%5Cmathbf%7BA%7D是循环的,则存在一个向量b使向量组eq?%5Bb~%5Cmathbf%7BA%7Db~%5Ccdots%20~%5Cmathbf%7BA%7D%5E%7Bn-1%7Db%5D能张成n维空间,或等价于eq?%5Cleft%20%28%20%5Cmathbf%7BA%7D%2Cb%20%5Cright%20%29可控。eq?%5Cmathbf%7BA%7D循环的充分必要条件是eq?%5Cmathbf%7BA%7D的约当标准型中相应于每个不同的特征值仅有一个约当块。eq?%5Cmathbf%7BA%7D循环的充分条件是eq?%5Cmathbf%7BA%7D的n个特征值均不相同。

        对于多变量系统,K的选择是不唯一的。

        多输入系统状态反馈配置极点问题的另一特点是“非线性方程”

7cba15f60f1b4e6a9da136bc16ea7667.png

ae612cd5c0df4b79afe4e582c8a9c8fa.png

6a90b10850234f8ca96a694fd99dcf15.png

        极点配置中反馈增益阵选取的不唯一,表明由此生成的闭环传递函数阵一般是不同的,从而也将具有不同的响应特性。显然,在极点配置问题中应选择(动态性能好)响应速
度较快的反馈增益阵。
        给定极点组可用状态反馈达到配置的充分必要条件给定极点组需包含系统的全部不可控模态。因此判别原来系统的模态可控性就成了关键。

方法二:将原多变量系统变换为可控标准型后处理

1bfd08a375c54932a894bd818abdea38.png

f2de184ca28f45fe8a1f5bfe1584fcc0.png

下面介绍变换的具体做法:

  1.  不失一般性,假设 eq?%5Cmathbf%7BB%3D%7D%5B%5Cmathbf%7Bb%7D_1%5Cmathbf%7Bb%7D_2%2C%5Cldots%5Cldots%5Cmathbf%7Bb%7D_p%5D 列满秩;
  2. 列出可控性矩阵
    eq?%5Cmathbf%7BU%7D%3D%5B%5Cunderbrace%7B%5Cmathbf%7Bb%7D_1~%5Cmathbf%7Bb%7D_2%5Ccdots%5Cmathbf%7Bb%7D_p%7D_%5Cmathbf%7BB%7D%5Cunderbrace%7B~%5Cmathbf%7BA%7D%5Cmathbf%7Bb%7D_1~%5Cmathbf%7BA%7D%5Cmathbf%7Bb%7D_2%5Ccdots%5Cmathbf%7BA%7D%5Cmathbf%7Bb%7D_p%7D_%5Cmathbf%7BAB%7D%5Ccdots%5Cunderbrace%7B%5Cmathbf%7BA%7D%5E%7Bn-1%7D%5Cmathbf%7Bb%7D_1~%5Cmathbf%7BA%7D%5E%7Bn-1%7D%5Cmathbf%7Bb%7D_2%5Ccdots%5Cmathbf%7BA%7D%5E%7Bn-1%7D%5Cmathbf%7Bb%7D_p%7D_%5Cmathbf%7BA%5E%7Bn-1%7D%5Cmathbf%7BB%7D%7D%5D
    按照上面的排列顺序,自左向右挑选出n个线性无关向量,再重新排列如下:
    eq?%5Cunderbrace%7B%5Cmathbf%7Bb%7D_%7B1%7D~%5Cmathbf%7BA%7D%5Cmathbf%7Bb%7D_%7B1%7D%5Ccdots%5Cmathbf%7BA%7D%5E%7B%5Cmu%20_%7B1%7D-1%7D%5Cmathbf%7Bb%7D_%7B1%7D%7D_%5Cmathbf%7Bb_1%7D~%5Cunderbrace%7B%5Cmathbf%7Bb%7D_%7B2%7D~%5Cmathbf%7BA%7D%5Cmathbf%7Bb%7D_%7B2%7D%5Ccdots%5Cmathbf%7BA%7D%5E%7B%5Cmu%20_%7B2%7D-1%7D%5Cmathbf%7Bb%7D_%7B2%7D%7D_%5Cmathbf%7Bb_2%7D%5Ccdots%5Cunderbrace%7B%5Cmathbf%7Bb%7D_%7Bp%7D~%5Cmathbf%7BA%7D%5Cmathbf%7Bb%7D_%7Bp%7D%5Ccdots%5Cmathbf%7BA%7D%5E%7B%5Cmu%20_P-1%7D%5Cmathbf%7Bb%7D_%7Bp%7D%7D_%5Cmathbf%7Bb_p%7D
    显然有
     eq?%5Cmu%20_1&plus;%5Cmu%20_2&plus;%5Ccdots&plus;%5Cmu%20_p%3Dn
    (注意:若某一向量,例如eq?%5Cmathbf%7BAb%7D_2可由eq?%5Cmathbf%7Bb%7D_1%2C%5Cmathbf%7Bb%7D_2%2C%5Ccdots%2C%5Cmathbf%7Bb%7D_%5Cmathrm%7Bp%7D%2C%5Cmathbf%7BA%7D%5Cmathbf%7Bb%7D_1线性表出,即
    eq?%5Cmathbf%7BAb%7D_2%3Da_1%5Cmathbf%7Bb%7D_1&plus;a_2%5Cmathbf%7Bb%7D_2&plus;%5Ccdots&plus;a_p%5Cmathbf%7Bb%7D_p&plus;a_%7Bp&plus;1%7D%5Cmathbf%7BAb%7D_1
    则所有eq?%5Cmathbf%7BA%7D%5Ek%5Cmathbf%7Bb%7D_2%2Ck%5Cgeq%201均不会被选到。因为它们都可以由eq?%5Cmathbf%7Bb%7D_1%2C%5Cmathbf%7Bb%7D_2%2C%5Ccdots%2C%5Cmathbf%7Bb%7D_%5Cmathrm%7Bp%7D%2C%5Cmathbf%7BA%7D%5Cmathbf%7Bb%7D_1线性表出)

  3. eq?%5Cmathbf%7BP%7D_1%5E%7B-1%7D%3D%5B%5Cunderbrace%7B%5Cmathbf%7Bb%7D_1%5Cmathbf%7B~Ab%7D_1%5Ccdots%5Cmathbf%7BA%7D%5E%7B%5Cmu%20_1-1%7D%5Cmathbf%7Bb%7D_1%7D_%7B%5Cmu_1%7D%5Cunderbrace%7B%5Cmathbf%7Bb%7D_2%5Cmathbf%7B~Ab%7D_2%5Ccdots%5Cmathbf%7BA%7D%5E%7B%5Cmu_2-1%7D%5Cmathbf%7Bb%7D_2%7D_%7B%5Cmu_2%7D%5Ccdots%5Cunderbrace%7B%5Cmathbf%7Bb%7D_p%5Cmathbf%7B~Ab%7D_p%5Ccdots%5Cmathbf%7BA%7D%5E%7B%5Cmu_p-1%7D%5Cmathbf%7Bb%7D_p%7D_%7B%5Cmu_p%7D%5D
  4. 求出 eq?%5Cmathbf%7BP%7D_1,以 eq?%5Cmathbf%7Bh%7D_i 表示 eq?%5Cmathbf%7BP%7D_1 阵的第 eq?%5Cmu_1eq?%5Cmu_1&plus;%5Cmu_2、…及  eq?%5Csum_%7B1%7D%5E%7Bp%7D%5Cmu_i 行

    构造变换阵:
    18ad1bd64e3b48c6a0535b66d35e8715.png
    65d4fa4a003f44eb88e8a393b6532628.png
  5. 取非奇异变换 eq?%5Coverline%7Bx%7D%3D%5Cmathbf%7BP%7D_2x,就可得到 eq?%5Cmathbf%7B%5Coverline%7BA%7D%7D%3D%5Cmathbf%7BP%7D_2%5Cmathbf%7BA%7D%5Cmathbf%7BP%7D_2%5E%7B-1%7D%2C%5Cmathbf%7B%5Coverline%7BB%7D%7D%3D%5Cmathbf%7BP%7D_2%5Cmathbf%7BB%7D%2C%5Cmathbf%7B%5Coverline%7BC%7D%7D%3D%5Cmathbf%7BC%7D%5Cmathbf%7BP%7D_2%5E%7B-1%7D

6f6267b54dc042b29bebfa43a9fc1da4.png

97d5388187d845b1b542a4b1afcf9220.png

方法三:通过解一个李雅普诺夫方程实现,不必将A变换为可控标准形:

(略)

 

太抽象了实在是,还是找道题看一下吧:

8a05ced59218400f8bc4c9c9719afb34.png

88e777c58e75484a80ec497a125209d1.png

5d5d04e711724ba0b024a37c79bc1da1.png

考试的时候还是判断一下可控性,然后直接让多项式系数对应相等做吧。

 

5.1.6 镇定问题

        定义:

        在系统设计中,往往仅需改变不稳定的特征值(具有非负实部的特征值)。从而使系统所有特征值均具有负实部,系统稳定,这一过程称为镇定。

        是否需要镇定?

        ①系统所有特征值均具有负实部=>不需要镇定;

        ②系统具有非负实部特征值=>需要镇定;

        对于定常系统eq?%5Cdot%7B%5Cmathbf%7Bx%7D%7D%3D%5Cmathbf%7BA%7D%5Cmathbf%7Bx%7D&plus;%5Cmathbf%7BB%7Du,若能狗狗找到状态反馈eq?%5Cmathbf%7Bu%3Dr&plus;Kx%7D,使得经反馈后的闭环系统eq?%5Cdot%7B%5Cmathbf%7Bx%7D%7D%3D%5Cmathbf%7BAx%7D&plus;%5Cmathbf%7BBu%7D%3D%28%5Cmathbf%7BA%7D&plus;%5Cmathbf%7BBK%7D%29%5Cmathbf%7Bx%7D&plus;%5Cmathbf%7BBr%7D的所有特征值均有负实部(渐近稳定),就称系统是可反馈镇定的。

        定理:系统(A,B)可用状态反馈镇定的充分必要条件其所有的不可控模态均具有负实部。

2d0a8e745e5446e1914aedcd463b4ad3.png

5.2 状态观测器

5.2.1 基本认识

        一般系统的输入量u和输出量y均为已知,因此希望利用eq?%5Cmathbf%7By%7D%3D%5Cmathbf%7BC%7D%5Cmathbf%7Bx%7Deq?%5Cmathbf%7B%5Chat%7By%7D%7D%3D%5Cmathbf%7BC%7D%5Cmathbf%7B%5Chat%7Bx%7D%7D的偏差信号来修正eq?%5Chat%7B%5Cmathbf%7Bx%7D%7D的值,形成下面的闭环估计方案。

cc3a5e781f98442a8c2b3dd72fbd1dbc.png

        n维基本状态观测器:

eq?%5Cbegin%7Baligned%7D%20%26%20%5Cdot%7B%5Chat%7B%5Cmathbf%7Bx%7D%7D%7D%3D%28%5Cmathbf%7BA%7D-%5Cmathbf%7BL%7D%5Cmathbf%7BC%7D%29%5Chat%7B%5Cmathbf%7Bx%7D%7D&plus;%5Cmathbf%7BB%7D%5Cmathbf%7Bu%7D&plus;%5Cmathbf%7BL%7D%5Cmathbf%7By%7D%20%5C%5C%20%26%20%5Cmathbf%7Bw%7D%3D%5Cmathbf%7BI%7D%5Chat%7B%5Cmathbf%7Bx%7D%7D%20%5Cend%7Baligned%7D

ab3b0d872c3d4da3a61e26636fd98136.png

        定理:线性时不变系统eq?%5Cleft%20%28%20%5Cmathbf%7BA%2CB%2CC%7D%20%5Cright%20%29的状态观测器可任意配置特征值的充分必要条件是eq?%5Cleft%20%28%20%5Cmathbf%7BA%2CC%7D%20%5Cright%20%29可观测。状态观测器存在的充要条件是系统可检测(系统中不可观测的模态是稳定模态),可检测是可镇定的对偶提法。

 

Kx状态观测器:

023a1756f7384b4b9567953d6a31ffc1.png

5.2.2 单入单出系统的状态观测器

步骤:

1)记eq?%5Cdet%28s%5Cmathbf%7BI%7D-%5Cmathbf%7BA%7D%29%3Ds%5En&plus;%5Calpha_1s%5E%7Bn-1%7D&plus;%5Ccdots&plus;%5Calpha_%7Bn-1%7Ds&plus;%5Calpha_n。因原系统eq?%5Cleft%20%28%20%5Cmathbf%7BA%2Cc%7D%20%5Cright%20%29可观测,对其作等价变换后可得可观测标准形。

eq?%5Cbegin%7Baligned%7D%20%26%20%5Cdot%7B%5Cbar%7B%5Cmathbf%7Bx%7D%7D%7D%3D%20%5Cunderbrace%7B%5Cbegin%7Bbmatrix%7D%200%20%26%20%26%20%26%20%26%20-a_n%20%5C%5C%201%20%26%20%26%20%26%20%26%20-a_%7Bn-1%7D%20%5C%5C%20%26%201%20%26%20%26%20%26%20%26%20%5C%5C%20%26%20%26%20%5Cddots%20%26%20%26%20%26%20%5C%5C%20%26%20%26%20%26%201%20%26%20-a_1%20%5Cend%7Bbmatrix%7D%7D_%7B%5Cmathbf%7B%5Ctilde%7BA%7D%7D%7D%5Coverline%7B%5Cmathbf%7Bx%7D%7D&plus;%5Cunderbrace%7B%20%5Cbegin%7Bbmatrix%7D%20b_n%20%5C%5C%20b_%7Bn-1%7D%20%5C%5C%20%5Cvdots%20%5C%5C%20%5Cvdots%20%5C%5C%20b_1%20%5Cend%7Bbmatrix%7D%7D_%7B%5Cmathbf%7B%5Ctilde%7Bb%7D%7D%7Du%20%5C%5C%20%26%20y%3D%5Cunderbrace%7B%20%5Cbegin%7Bbmatrix%7D%200%20%26%200%20%26%20%5Ccdots%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D%7D_%7B%5Cmathbf%7B%5Coverline%7Bc%7D%7D%7D%5Coverline%7B%5Cmathbf%7Bx%7D%7D%20%5Cend%7Baligned%7D

2)对eq?%5Cleft%28%5Cbar%7B%5Cmathrm%7BA%7D%7D%2C%5Cbar%7B%5Cmathrm%7Bb%7D%7D%2C%5Cbar%7B%5Cmathrm%7Bc%7D%7D%5Cright%29构造状态观测器:

eq?%5Cdot%7B%5Chat%7B%5Cmathbf%7Bx%7D%7D%7D%3D%28%5Cbar%7B%5Cmathbf%7BA%7D%7D-%5Cbar%7B%5Cmathrm%7Bl%7D%7D%5Cbar%7B%5Cmathrm%7Bc%7D%7D%29%5Chat%7B%5Cbar%7B%5Cmathbf%7Bx%7D%7D%7D&plus;%5Cbar%7B%5Cmathrm%7Bb%7D%7Du&plus;%5Cbar%7B%5Cmathrm%7Bl%7D%7Dy

340747e27e834804b2842afaeb7a4caa.png

e83028c8dc1c422380cecaffb19a3561.png

77f263ab89a944309e4f8a19ba9bbcf5.jpeg

f230cf02421a49629f6f188f0fb9da84.jpeg

5.2.3 最小维状态观测器

引理:若系统eq?%5Cleft%20%28%20%5Cmathbf%7BA%2CB%2CC%7D%20%5Cright%20%29 可控可观测,且eq?rank%5Cmathbf%7BC%7D%3Dq,则系统的状态观测器的最小维数是

eq?n-q

求降维状态观测器的一般步骤:

考虑 eq?n 维动力学方程

eq?%5Cdot%7Bx%7D%20%3DA_%7Bn%5Ctimes%20n%7Dx&plus;B_%7Bn%5Ctimes%20p%7Du%5C%5Cy%3DC_%7Bq%5Ctimes%20n%7Dx

假定 C 为行满秩,即 rank C = q ,构造降维状态观测器。

  1. 判断系统的可观测性,如果可观测进行下一步;若不可观测,则不能设计降维观测器。
     
  2. C 为行满秩时,定义

eq?P%3D%5Cbegin%7Bbmatrix%7D%20C%5C%5C%20R%20%5Cend%7Bbmatrix%7D

选取 R 使矩阵 P 非奇异。

     3. 由变换矩阵 P 求系统的等价变换

eq?%5Cbegin%7Bbmatrix%7D%20%24%24%7B%7B%7B%5Cdot%20%7B%5Cbar%20x%7D_1%7D%7D%7D%24%24%20%5C%5C%20%24%24%7B%7B%7B%5Cdot%20%7B%5Cbar%20x%7D_2%7D%7D%7D%24%24%20%5Cend%7Bbmatrix%7D%3D%5Cbegin%7Bbmatrix%7D%20%24%24%7B%7B%7B%5Cbar%20A%7D_%7B11%7D%7D%7D%24%24%20%26%20%24%24%7B%7B%7B%5Cbar%20A%7D_%7B12%7D%7D%7D%24%24%5C%5C%20%24%24%7B%7B%7B%5Cbar%20A%7D_%7B21%7D%7D%7D%24%24%20%26%20%24%24%7B%7B%7B%5Cbar%20A%7D_%7B22%7D%7D%7D%24%24%20%5Cend%7Bbmatrix%7D%7B%5Cbegin%7Bbmatrix%7D%24%24%20%7B%7B%7B%5Cbar%20x%7D_1%7D%7D%5C%5C%20%7B%7B%7B%5Cbar%20x%7D_2%7D%7D%24%24%20%5Cend%7Bbmatrix%7D%7D&plus;%5Cbegin%7Bbmatrix%7D%20%24%24%7B%7B%7B%5Cbar%20B%7D_1%7D%7D%24%24%5C%5C%20%24%24%7B%7B%7B%5Cbar%20B%7D_2%7D%7D%24%24%20%5Cend%7Bbmatrix%7Du

eq?y%20%3D%20%5Cbegin%7Bbmatrix%7D%20I_%7Bq%7D%260%20%5Cend%7Bbmatrix%7D%5Cbegin%7Bbmatrix%7D%20%24%24%7B%5Cbar%20x_1%7D%24%24%5C%5C%20%24%24%7B%5Cbar%20x_2%7D%24%24%20%5Cend%7Bbmatrix%7D%3D%7B%5Cbar%20x_1%7D

引入等价变换的目的,就是使eq?%5Cbar%7B%5Cmathbf%7BC%7D%7D具有此形式。

若原系统eq?%5Cmathbf%7BC%7D已具备此形式,无需变换。

eq?%5Cbar%7Bx_1%7D%3Dy,不需估计

②只有eq?%5Cbar%7Bx%7D的后eq?%5Cleft%20%28%20n-q%20%5Cright%20%29个分量eq?%5Cbar%7Bx_2%7D需要估计

③仅需构造一个针对eq?%5Cbar%7Bx_2%7Deq?%5Cleft%20%28%20n-q%20%5Cright%20%29维的状态估计器

     4. 根据观测器极点配置要求,由下面方程设计 eq?%5Coverline%7BL%7D 矩阵(4.和 5.的公式试卷上一般会给提示)

eq?%5Cdot%7Bz%7D%3D%28%5Cbar%7BA_%7B22%7D%7D-%5Cbar%7BL%7D%5Cbar%7BA_%7B12%7D%7D%29z&plus;%5B%28%5Cbar%7BA%7D_%7B22%7D-%5Cbar%7BL%7D%5Cbar%7BA%7D_%7B12%7D%29%5Cbar%7BL%7D&plus;%28%5Cbar%7BA%7D_%7B21%7D-%5Cbar%7BL%7D%5Cbar%7BA%7D_%7B11%7D%29%5Dy&plus;%28%5Cbar%7BB_%7B2%7D%7D-%5Cbar%7BL%7D%5Cbar%7BB_1%7D%29u

     5. 求降维状态观测器

eq?%5Chat%7Bx%7D%3DQ%5Chat%7B%5Cbar%7Bx%7D%7D%3D%5Cbegin%7Bbmatrix%7D%20Q_1%20%26%20Q_2%20%5Cend%7Bbmatrix%7D%5Cbegin%7Bbmatrix%7D%20y%5C%5C%20%5Cbar%7BL%7Dy&plus;z%20%5Cend%7Bbmatrix%7D%3D%5Cbegin%7Bbmatrix%7D%20Q_1%20%26%20Q_2%20%5Cend%7Bbmatrix%7D%5Cbegin%7Bbmatrix%7D%20I_q%20%26%200%5C%5C%20%5Cbar%7BL%7D%20%26%20I_%7Bn-q%7D%20%5Cend%7Bbmatrix%7D%5Cbegin%7Bbmatrix%7D%20y%5C%5C%20z%20%5Cend%7Bbmatrix%7D%5C%5C%5C%5C%3D%5Cbegin%7Bbmatrix%7D%20Q_1&plus;Q_2%5Cbar%7BL%7D%20%26%20Q_2%20%5Cend%7Bbmatrix%7D%5Cbegin%7Bbmatrix%7D%20y%5C%5C%20z%20%5Cend%7Bbmatrix%7D

 

5.3 状态反馈和状态观测器的连接

79ebab64e9a14bc5b550c6247a752b83.png

0b63c76eb268429e8d21a31ad39c5a44.jpeg

第六章 系统的运动稳定性

考点

1.系统eq?%5Cfrac%7Bdx%7D%7Bdt%7D%3D%5Cmathbf%7BA%7Dx的稳定性的充分必要条件

        李氏稳定:det(sI-A)实部为零的根对应的初等因子是一次(或对应的约当块为一阶子块;是最小多项式的单根;几何重数等于代数重数),且其余根均具负实部。

        渐近稳定:det(sI-A)的所有根均具负实部。

        不稳定:det(sI-A)有正实部的根,或实部为零的根对应的初等因子不是一次。

2.BIBS稳定性判定

        1)系统BIBS稳定<=>系统全体可控模态具负实部(相应的模式收敛);

        2)系统BIBS 全稳定<=>系统全体可控模式收敛、全体不可控模式不发散。

复数域判别法:

ead819ea3c8342f993681d8eaaf3b976.png

3.BIBO稳定性判定

        1)系统BIBO稳定<=>系统全体可控可观模态具负实部(相应的模式收敛);

        2)系统BIBO全稳定<=>系统全体可控可观模式收敛、全体不可控模式不发散。

ddd2812e6767424dad67f6b301eab600.png

f9b608690cee4e27bfd7e15501736705.png

69736e8d82794d279b40ee571a915589.png

9b990a04901c4278ac3ae682763394f4.png

033cc881df4041d5a3f51396fa12f0d2.png

4.总体稳定的充分必要条件是BIBS全稳定

b2059acda2214b9d8b370e4c0831d700.png

5.稳定性之间的关系

1d84022c63ee4f43a5a45008210dd688.png

2bfc0aee31584d4dab4a209e3d018a84.png

1286caa65fb045c089bad6d9e13f4dd0.png

 

6.稳定性判别——复频域极点法

f75bc3900d964665a2e3c047abfbf151.png

一、李雅普诺夫稳定性的定义:

        对于一个系统 eq?%5Cdot%7Bx%7D%3Df%5Cleft%28%20x%20%5Cright%29 ,其平衡点 eq?x%3D0 是李雅普诺夫稳定的,满足以下条件:

1. 对于任意给定的一个小的正数 eq?%5Cvarepsilon%20%3E0,存在一个正数 eq?%5Cdelta%20%3E0,使得当系统初态 eq?x%5Cleft%28%200%20%5Cright%29 满足

eq?%5Cleft%20%5C%7C%20x%5Cleft%28%200%20%5Cright%29%20%5Cright%20%5C%7C%3C%5Cdelta 时,系统的状态 eq?x%5Cleft%28%20t%20%5Cright%29 对任意 eq?t%5Cgeqslant%200 都满足 eq?%5Cleft%20%5C%7C%20x%5Cleft%20%28%20t%20%5Cright%20%29%20%5Cright%20%5C%7C%3C%20%5Cvarepsilon

        简言之:

        如果系统从某个足够靠近平衡点的初始状态出发,系统的状态在任意时间都不会偏离平衡点

太远,则平衡点是李雅普诺夫稳定的。

理解的关键点:

  • 局部性:李雅普诺夫稳定性通常是局部的,即只对靠近平衡点的小范围有效。因此,讨论的

    “初态范围”和“末态范围”都是针对平衡点附近的。
     
  • 李雅普诺夫稳定性只要求状态不发散(始终保持在一定范围内)。如果进一步要求状态随着时

    间趋于平衡点(即 eq?x%5Cleft%20%28%20t%20%5Cright%20%29%5Crightarrow%200%20~%20as~%20t%5Crightarrow%200),则是渐近稳定性。

二、李雅普诺夫稳定性概念的多个层次:

  1. 稳定性(Stability)

    定义:一个系统的平衡点(例如 eq?x%3D0)是稳定的,当且仅当:
     

    对于任意给定的一个小的正数 eq?%5Cvarepsilon%20%3E0,存在一个正数 eq?%5Cdelta%20%3E0,使得当系统初态 eq?x%5Cleft%28%200%20%5Cright%29 满足

    eq?%5Cleft%20%5C%7C%20x%5Cleft%28%200%20%5Cright%29%20%5Cright%20%5C%7C%3C%5Cdelta 时,系统的状态 eq?x%5Cleft%28%20t%20%5Cright%29 对任意 eq?t%5Cgeqslant%200 都满足 eq?%5Cleft%20%5C%7C%20x%5Cleft%20%28%20t%20%5Cright%20%29%20%5Cright%20%5C%7C%3C%20%5Cvarepsilon

    直观解释:初态如果足够靠近平衡点,系统状态将一直保持在平衡点附近,而不会偏离太远。

  2. 渐近稳定性(Asymptotic Stability)

    定义:一个平衡点是渐近稳定的,如果:

              1.它是稳定的;
              2.系统状态随时间趋近于平衡点,即 eq?%5Clim_%7Bt%5Crightarrow%20%5Cinfty%7Dx%5Cleft%20%28%20t%20%5Cright%20%29%3D0

    直观解释:渐近稳定性比稳定性更强,不仅要求系统状态不偏离平衡点,还要求最终收敛到平衡点。

  3. 一致稳定性(Uniform Stability)

    定义:平衡点是一致稳定的,当且仅当:

    对于任意 eq?%5Cvarepsilon%20%3E%200,存在 eq?%5Cdelta%20%3E%200,使得对于所有初始时间 eq?t_%7B0%7D 和所有 eq?%5Cleft%20%5C%7C%20x%5Cleft%20%28%20t_%7B0%7D%20%5Cright%20%29%20%5Cright%20%5C%7C%3C%20%5Cdelta,都保证

    eq?%5Cleft%20%5C%7C%20x%5Cleft%20%28%20t%20%5Cright%20%29%20%5Cright%20%5C%7C%3C%20%5Cvarepsilon 对任意 eq?t%5Cgeqslant%20t_%7B0%7D 成立。

    与稳定性的区别:一致稳定性强调的是时间 eq?t_0​ 的独立性。普通稳定性可能依赖于具体的初始时间,而一致稳定性则确保这种关系对于任意 eq?t_0 都一致有效。

  4. 一致渐近稳定性(Uniform Asymptotic Stability)

    定义:平衡点是一致渐近稳定的,当且仅当:

               1.它是一致稳定的;
               2.且 eq?%5Clim_%7Bt%5Crightarrow%20%5Cinfty%7Dx%5Cleft%20%28%20t%20%5Cright%20%29%3D0 的收敛速度与初始时间 eq?t_0 无关。

    与渐近稳定性的区别:普通渐近稳定性可能依赖于初始时间 eq?t_0 的选择,而一致渐近稳定性则要求收敛行为对所有初始时间 eq?t_0 都保持一致。

  5. 指数渐近稳定性(Exponential Asymptotic Stability)

    定义:平衡点是指数渐近稳定的,如果存在正数 eq?c%3E%200 和 eq?%5Clambda%20%3E%200,使得:

    eq?%5Cleft%20%5C%7C%20x%5Cleft%20%28%20t%20%5Cright%20%29%20%5Cright%20%5C%7C%5Cleq%20c%5Cleft%20%5C%7C%20x%5Cleft%20%28%200%20%5Cright%20%29%20%5Cright%20%5C%7Ce%5E%7B-%5Clambda%20t%7D%2C~%5Cforall%20t%5Cgeq%200

    这里的 eq?eq?c 和 eq?%5Clambda 是独立于初始条件的。

    直观解释:系统状态不仅趋近于平衡点,而且收敛速度是指数型的。相较于渐近稳定性,指数稳定性提供了更强的收敛速度描述。

三、线性系统稳定性的特点

        系统 eq?%5Cdot%7Bx%7D%3D%5Cmathbf%7BA%7D%28t%29x&plus;%5Cmathbf%7BB%7D%28t%29u 在任意输入 eq?u 作用下、任一实际运动的稳定性问题都等价于其

对应齐次方程 eq?%5Cdot%7Bx%7D%3D%5Cmathbf%7BA%7D%28t%29x 关于零解的稳定性问题。

        原系统具有什么性质的稳定性,对应齐次方程 eq?%5Cdot%7Bx%7D%3D%5Cmathbf%7BA%7D%28t%29x 关于零解就具有同一种稳定性。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值