(别骂了别骂了 真不会分治啊/ll)
题目大意
给你n个点,求距离最近的两个点之间的距离。
n≤4e5。
前置芝士
分治
题解
先将点按照x坐标排好序,接着使用分治的方法。对于左区间和右区间先分别求出答案,然后考虑怎么合并两个区间。先记d为左区间答案和右区间答案的最小值,接下来把区间内的点按照y坐标排序,对于每个距离mid距离不超过d的点,枚举所有与它y坐标之差不大于d的点并依次求出答案。可以证明这样的点不会超过5个,因为每个d*d的正方形内部最多只会有5个点(被内接圆分为5个区域,每个区域各一个。因为若是一个区域内有2个则证明左区间或右区间的答案最小值不为d)。最后使用归并排序合并区间,复杂度 O ( n l o g n ) O(nlogn) O(nlogn) 。
Code
#include<bits/stdc++.h>
using namespace std;
const int N=4e5+5;
typedef long long ll;
const double INF=1e16;
int n,q[N];
struct point{
double x,y;
}a[N];
bool cmpx(point a,point b){
return a.x<b.x;
}
bool cmpy(point x,point y){
return x.y<y.y;
}
double dis(point a,point b){
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
double work(int l,int r){
if(l==r) return INF;
int mid=l+r>>1,md=a[mid].x;
double d=min(work(l,mid),work(mid+1,r));
int sz=0,pos=1;
inplace_merge(a+l,a+mid+1,a+r+1,cmpy);
for(int i=l;i<=r;i++)
if(abs(md-a[i].x)<=d) q[++sz]=i;
for(int i=1;i<=sz;i++){
while(a[q[pos]].y-a[q[i]].y<=d&&pos<=sz) pos++;
for(int j=i+1;j<pos;j++)
d=min(d,dis(a[q[i]],a[q[j]]));
}
return d;
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%lf%lf",&a[i].x,&a[i].y);
sort(a+1,a+1+n,cmpx);
double ans=work(1,n);
printf("%.0lf",ans*ans);
return 0;
}
这个题是我看了别人的题解才会的,我的评价是太神了,反正我八成是永远也想不出这种微妙的解法,%%%。