求具有滚降系数 a 的余弦滚降特性 H(f) 相应的冲激响应 h(t)

通信原理 :求具有滚降系数 a 的余弦滚降特性 H(f) 相应的冲激相应 h(t) 。
摘要由CSDN通过智能技术生成

问题的提出

求 具 有 滚 降 系 数 α 的 余 弦 滚 降 特 性 H ( f ) 相 应 的 冲 激 响 应 h ( t ) 。 H ( f ) = { T b   , 0 ≤ ∣ f ∣ ≤ ( ( 1 − α ) / 2 T b ) T b 2 { 1 + cos ⁡ [ π T b α ( ∣ f ∣ − 1 − α 2 T b ) ] }   , 1 − α 2 T b ≤ ∣ f ∣ ≤ 1 + α 2 T b 0   , ∣ f ∣ ≤ ( ( 1 + α ) / 2 T b ) 其 中   ,   0 ≤ α ≤ 1 。 求具有滚降系数 \alpha的余弦滚降特性H( f ) 相应的冲激响应 { h(t)}。\\ \\ \\ H(f)= \begin{cases} T_b\,,0 \leq |f| \leq ((1-\alpha)/2T_b) \\ \large {T_b \over 2}\{1+\cos[{\pi T_b \over \alpha}(|f|-{1-\alpha \over 2T_b})]\} \,,{1-\alpha \over 2T_b} \leq |f| \leq {1+\alpha \over 2T_b} \\ 0 \,, |f| \leq ((1+\alpha)/2T_b) \end{cases} \\ \\ 其中\,,\, 0 \le \alpha \le 1。 αH(f)h(t)H(f)=Tb,0f((1α)/2Tb)2Tb{ 1+cos[απTb(f2Tb1α)]},2Tb1αf2Tb1+α0,f((1+α)/2Tb),0α1

求解分段函数的第1部分对应的h1(t)

利用傅里叶变换的对称性:

{ f ( t )   ⇔ F ( ω ) F ( t )   ⇔ 2 π f ( − ω ) \begin{cases} f(t)\, \Leftrightarrow F(\omega) \\ F(t)\, \Leftrightarrow 2\pi f(-\omega) \end{cases} { f(t)F(ω)F(t)2πf(ω)

故由:

f ( t ) = { E   , ∣ t ∣ ≤ τ 2 0   , 其 他 ⇔ F ( ω ) = 2 E sin ⁡ ω τ 2 ω f(t)=\begin{cases} E\,,|t| \leq {\large \tau \over 2} \\ 0\,,其他 \end{cases} \Leftrightarrow F(\omega)=2E{\sin{\large \omega \tau \over 2} \over \omega} f(t)={ E,t2τ0,F(ω)=2Eωsin2ωτ

推出:(1)

H 1 ( ω ) = { T b   , 0 ≤ ∣ ω ∣ ≤ π ( 1 − α ) T b 0   , 其 他 ⇔ h 1 ( t ) = 2 T b sin ⁡ π ( 1 − α ) t T b 2 π t = T b sin ⁡ π ( 1 − α ) t T b π t ⇒ H 1 ( f ) = { T b   , 0 ≤ ∣ f ∣ ≤ ( 1 − α ) 2 T b 0   , 其 他 ⇔ h 1 ( t ) = 2 T b sin ⁡ π ( 1 − α ) t T b 2 π t = T b sin ⁡ π ( 1 − α ) t T b π t \begin{aligned} H_1(\omega) &= \begin{cases} T_b\,,0\leq |\omega| \leq \large{ \pi (1-\alpha) \over T_b} \\ 0\,,其他 \end{cases} \Leftrightarrow \large h_1(t)=2T_b{ {\sin \large{ \pi (1-\alpha)t} \over T_b } \over 2\pi t} = T_b{ {\sin \large{ \pi (1-\alpha)t \over T_b }} \over \pi t} \\ \Rightarrow H_1(f) &= \begin{cases} T_b\,,0\leq |f| \leq \large{ (1-\alpha) \over 2T_b} \\ 0\,,其他 \end{cases} \Leftrightarrow \large h_1(t)=2T_b{ {\sin \large{ \pi (1-\alpha)t }\over T_b } \over 2\pi t} = T_b{ {\sin \large{ \pi (1-\alpha)t} \over T_b } \over \pi t} \end{aligned} H1(ω)H1(f)={ Tb,0ωTbπ(1α)0,h1(t)=2Tb2πtsinTbπ(1α)t=TbπtsinTbπ(1α)t={ Tb,0f2Tb(1α)0,h1(t)=2Tb2πtsinTbπ(1α)t=TbπtsinTbπ(1α)t

求解分段函数的第2部分对应的h2(t)

又由:

H 2 ( f ) = T b 2 { 1 + cos ⁡ [ π T b α ( ∣ f ∣ − 1 − α 2 T b ) ] }   , 1 − α 2 T b ≤ ∣ f ∣ ≤ 1 + α 2 T b ⇒ H 2 ( ω ) = T b 2 { 1 + cos ⁡ [ T b 2 α ( ∣ ω ∣ − π ( 1 − α ) T b ) ] }   , π ( 1 − α ) T b ≤ ∣ ω ∣ ≤ π ( 1 + α ) T b \large \begin{aligned} H_2(f) &= {T_b \over 2}\{1+\cos[{\pi T_b \over \alpha}(|f|-{1-\alpha \over 2T_b})]\} \,,{1-\alpha \over 2T_b} \leq |f| \leq {1+\alpha \over 2T_b} \\ \Rightarrow H_2(\omega) &= {T_b \over 2}\{1+\cos[{ T_b \over 2\alpha}(|\omega|-{\pi(1-\alpha) \over T_b})]\} \,,{\pi(1-\alpha) \over T_b} \leq |\omega| \leq {\pi(1+\alpha) \over T_b} \end{aligned} H2(f)H2(ω)=2Tb{ 1+cos[απTb(f2Tb1α)]},2Tb1αf2Tb1+α=2Tb{ 1+cos[2αTb(ωTbπ(1α))]},Tbπ(1α)ωTbπ(1+α)

推出:(2)

对 应 的 h ( t ) 如 下 : 2 π h 2 ( t ) = ∫ − ∞ ∞ T b 2 { 1 + cos ⁡ [ T b 2 α ( ∣ ω ∣ − π ( 1 − α ) T b ) ] } e j ω t d ω ⇒ 4 π T b h 2 ( t ) = ∫ − ∞ ∞ { 1 + cos ⁡ [ T b 2 α ( ∣ ω ∣ − π ( 1 − α ) T b ) ] } e j ω t d ω = ∫ − 1 + α T b π − 1 − α T b π { 1 + cos ⁡ [ T b 2 α ( − ω − π ( 1 − α ) T b ) ] } e j ω t d ω   + ∫ 1 − α T b π 1 + α T b π { 1 + cos ⁡ [ T b 2 α ( ω − π ( 1 − α ) T b ) ] } e j ω t d ω = e j ω t j t ∣ − 1 + α T b π − 1 − α T b π   + e j ω t j t ∣ 1 − α T b π 1 + α T b π   + ∫ − 1 + α T b π − 1 − α T b π cos ⁡ [ T b 2 α ( − ω − π ( 1 − α ) T b ) ] e j ω t d ω   + ∫ 1 − α T b π 1 + α T b π cos ⁡ [ T b 2 α ( ω − π ( 1 − α ) T b ) ] e j ω t d ω = 2 [ sin ⁡ π ( 1 + α ) T b t t − sin ⁡ π ( 1 − α ) T b t t ]   + ∫

  • 12
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值