《高等数学》:推导第七版下册第十章第四节的“利用曲面的参数方程求曲面的面积“

要推导的公式

如果曲面   S   \,S\, S由参数方程: { x = x ( u , v ) , y = y ( u , v ) , z = z ( u , v ) ( u , v ) ∈ D \begin{cases}x=x(u,v), \\ y=y(u,v), \\ z=z(u,v)\end{cases} \quad (u,v) \in D\quad x=x(u,v),y=y(u,v),z=z(u,v)(u,v)D给出,其中   D   \,D\, D是一个平面有界闭区域,又   x ( u , v )   ,   y ( u , v )   ,   z ( u , v )   \,x(u,v)\,,\,y(u,v)\,,\,z(u,v)\, x(u,v),y(u,v),z(u,v)   D   \,D\, D上具有连续的一阶偏导数,且   ∂ ( x , y ) ∂ ( u , v )   ,   ∂ ( y , z ) ∂ ( u , v )   ,   ∂ ( z , x ) ∂ ( u , v )   \,\begin{aligned}\dfrac{\partial(x,y)}{\partial(u,v)}\,,\,\dfrac{\partial(y,z)}{\partial(u,v)}\,,\,\dfrac{\partial(z,x)}{\partial(u,v)}\end{aligned}\, (u,v)(x,y),(u,v)(y,z),(u,v)(z,x)不全为零,则曲面   D   \,D\, D的面积为 A = ∬ D E G − F 2   d u d v   , E = x u 2 + y u 2 + z u 2 F = x u x v + y u y v + z u z v G = x v 2 + y v 2 + z v 2 \begin{aligned} &A=\iint_{D}\sqrt{EG-F^2}\,dudv \,,\\ &E = x_u^2+y_u^2+z_u^2 \\ &F=x_ux_v+y_uy_v+z_uz_v \\ &G=x_v^2+y_v^2+z_v^2 \end{aligned} A=DEGF2 dudv,E=xu2+yu2+zu2F=xuxv+yuyv+zuzvG=xv2+yv2+zv2

推导方法一

已知

若曲面   S   \,S\, S由方程   z = f ( x , y )   \,z=f(x,y)\, z=f(x,y)给出,   D   \,D\, D为曲面   S   \,S\, S   x O y   \,xOy\, xOy面上的投影区域,函数   f ( x , y )   \,f(x,y)\, f(x,y)   D   \,D\, D上具有连续偏导数   f x ( x , y )   \,f_x(x,y)\, fx(x,y)   f y ( x , y )   \,f_y(x,y)\, fy(x,y),则曲面面积的公式为:
A = ∬ ∑ d S = ∬ D 1 + ( ∂ z ∂ x ) 2 + ( ∂ z ∂ y ) 2   d x d y A=\iint_{\sum}dS=\begin{aligned}\iint_{D}\sqrt{1+(\dfrac{\partial z}{\partial x})^2+(\dfrac{\partial z}{\partial y})^2}\,dxdy\end{aligned} A=dS=D1+(xz)2+(yz)2 dxdy

结合第十章第三节的二重积分换元法,可知:

  f ( x , y ) = 1 + ( ∂ z ∂ x ) 2 + ( ∂ z ∂ y ) 2   \,f(x,y)=\sqrt{1+(\dfrac{\partial z}{\partial x})^2+(\dfrac{\partial z}{\partial y})^2}\, f(x,y)=1+(xz)2+(yz)2 ,将   x = x ( u , v )   ,   y = y ( u , v )   ,   z = z ( u , v )   \,x=x(u,v)\,,\,y=y(u,v)\,,\,z=z(u,v)\, x=x(u,v),y=y(u,v),z=z(u,v)代入,若能表示为   u , v   \,u,v\, u,v的函数   g ( u , v )   \,g(u,v)\, g(u,v),即   f ( x , y ) = f ( x ( u , v ) , y ( u , v ) ) = g ( u , v )   \,f(x,y)=f(x(u,v),y(u,v))=g(u,v)\, f(x,y)=f(x(u,v),y(u,v))=g(u,v),则曲面面积公式等于:   A = ∬ ∑ d S = ∬ D ′ g ( u , v ) ∣ ∂ ( x , y ) ∂ ( u , v ) ∣   d u d v   \,A=\iint_{\sum}dS=\iint_{D'}g(u,v)|\dfrac{\partial(x,y)}{\partial(u,v)}|\,dudv\, A=dS=Dg(u,v)(u,v)(x,y)dudv
其中   D 1   \,D_1\, D1   D   \,D\, D一对一映射到   u O v   \,uOv\, uOv平面上的闭区域。

又由第九章第四节的多元复合函数的求导法则的"多元函数与多元函数复合的情形",得:

∂ z ∂ u = ∂ z ∂ x ∂ x ∂ u + ∂ z ∂ y ∂ y ∂ u ∂ z ∂ v = ∂ z ∂ x ∂ x ∂ v + ∂ z ∂ y ∂ y ∂ v \begin{aligned}&\dfrac{\partial z}{\partial u}=\dfrac{\partial z}{\partial x}\dfrac{\partial x}{\partial u}+\dfrac{\partial z}{\partial y}\dfrac{\partial y}{\partial u} \\&\dfrac{\partial z}{\partial v}=\dfrac{\partial z}{\partial x}\dfrac{\partial x}{\partial v}+\dfrac{\partial z}{\partial y}\dfrac{\partial y}{\partial v}\end{aligned} uz=xzux+yzuyvz=xzvx+yzvy
简记为:
z u = z x x u + z y y u z v = z x x v + z y y v \begin{aligned}&z_u=z_xx_u+z_yy_u\\&z_v=z_xx_v+z_yy_v\end{aligned} zu=zxxu+zyyuzv=zxxv+zyyv

  z x   ,   z y   \,z_x\,,\,z_y\, zx,zy看作变量,其余为常数,由线性代数的克拉默法则以及行列式转置值不变的性质,得:
z x = ∣ z u y u z v y v ∣ ∣ x u y u x v y v ∣ = ∣ z u z v y u y v ∣ ∣ x u x v y u y v ∣   z y = ∣ x u z u x v z v ∣ ∣ x u y u x v y v ∣ = ∣ x u x v z u z v ∣ ∣ x u x v y u y v ∣ z_x=\dfrac{\begin{vmatrix} z_u & y_u \\ z_v & y_v \\ \end{vmatrix}}{\begin{vmatrix} x_u & y_u \\ x_v & y_v \\ \end{vmatrix}}=\dfrac{\begin{vmatrix} z_u & z_v \\ y_u & y_v \\ \end{vmatrix}}{\begin{vmatrix} x_u & x_v \\ y_u & y_v \\ \end{vmatrix}} \\ \, \\ z_y=\dfrac{\begin{vmatrix} x_u & z_u \\ x_v & z_v \\ \end{vmatrix}}{\begin{vmatrix} x_u & y_u \\ x_v & y_v \\ \end{vmatrix}}=\dfrac{\begin{vmatrix} x_u & x_v \\ z_u & z_v \\ \end{vmatrix}}{\begin{vmatrix} x_u & x_v \\ y_u & y_v \\ \end{vmatrix}} zx=xuxvyuyvzuzvyuyv=xuyuxvyvzuyuzvyvzy=xuxvyuyvxuxvzuzv=xuyuxvyvxuzuxvzv

则:
g ( u , v ) ∣ ∂ ( x , y ) ∂ ( u , v ) ∣ = f ( x , y ) ∣ ∂ ( x , y ) ∂ ( u , v ) ∣ = 1 + z x 2 + z y 2   ∣ ∂ ( x , y ) ∂ ( u , v ) ∣ = ∣ x u x v y u y v ∣ 2 + ∣ z u z v y u y v ∣ 2 + ∣ x u x v z u z v ∣ 2 = E G − F 2 \quad \begin{aligned} g(u,v)|\dfrac{\partial(x,y)}{\partial(u,v)}| &= f(x,y)|\dfrac{\partial(x,y)}{\partial(u,v)}|=\sqrt{1+z_x^2+z_y^2}\,|\dfrac{\partial(x,y)}{\partial(u,v)}| \\ &=\sqrt{\begin{vmatrix} x_u & x_v \\ y_u & y_v \\ \end{vmatrix}^2+\begin{vmatrix} z_u & z_v \\ y_u & y_v \\ \end{vmatrix}^2+\begin{vmatrix} x_u & x_v \\ z_u & z_v \\ \end{vmatrix}^2} \\ &= \sqrt{EG-F^2}\end{aligned} g(u,v)(u,v)(x,y)=f(x,y)(u,v)(x,y)=1+zx2+zy2 (u,v)(x,y)=xuyuxvyv2+zuyuzvyv2+xuzuxvzv2 =EGF2

推导成功。当然推导成功的前提是   ∂ ( x , y ) ∂ ( u , v ) = ∣ x u x v y u y v ∣   \,\dfrac{\partial(x,y)}{\partial(u,v)}=\begin{vmatrix} x_u & x_v \\ y_u & y_v \\ \end{vmatrix}\, (u,v)(x,y)=xuyuxvyv不为零,如果为零,可转换到   ∂ ( y , z ) ∂ ( u , v )   \,\dfrac{\partial(y,z)}{\partial(u,v)}\, (u,v)(y,z)的情形,如果这也为零,则最后转换到   ∂ ( z , x ) ∂ ( u , v )   \,\dfrac{\partial(z,x)}{\partial(u,v)}\, (u,v)(z,x)的情形。三者不能全为零。

推导方法二

由第十一章第五节的第三部分"两类曲面积分之间的联系",可知:

曲面   d S   \,dS\, dS   z   \,z\, z轴方向相同的法向量的方向余弦为:
cos ⁡ α = − z x 1 + z x 2 + z y 2   ,   cos ⁡ β = − z y 1 + z x 2 + z y 2   ,   cos ⁡ γ = 1 1 + z x 2 + z y 2   \cos\alpha = \dfrac{-z_x}{\sqrt{1+z_x^2+z_y^2}}\,,\,\cos\beta=\dfrac{-z_y}{\sqrt{1+z_x^2+z_y^2}}\,,\,\cos\gamma=\dfrac{1}{\sqrt{1+z_x^2+z_y^2}}\, cosα=1+zx2+zy2 zx,cosβ=1+zx2+zy2 zy,cosγ=1+zx2+zy2 1
其中   d S   \,dS\, dS与面积元   d y d z   ,   d z d x   ,   d x d y   \,dydz\,,\,dzdx\,,\,dxdy\, dydz,dzdx,dxdy之间的关系为:
d y d z = cos ⁡ α   d S   ,   d z d x = cos ⁡ β   d S   ,   d x d y = cos ⁡ γ   d S   dydz=\cos\alpha\,dS\,,\,dzdx=\cos\beta\,dS\,,\,dxdy=\cos\gamma\,dS\, dydz=cosαdS,dzdx=cosβdS,dxdy=cosγdS
由此可得:   d S = ( d y d z ) 2 + ( d z d x ) 2 + ( d x d y ) 2   \,dS=\sqrt{(dydz)^2+(dzdx)^2+(dxdy)^2}\, dS=(dydz)2+(dzdx)2+(dxdy)2

又由二重积分的换元法可知:

d y d z = ∣ ∂ ( y , z ) ∂ ( u , v ) ∣ d u d v d z d x = ∣ ∂ ( z , x ) ∂ ( u , v ) ∣ d u d v d x d y = ∣ ∂ ( x , y ) ∂ ( u , v ) ∣ d u d v dydz=|\dfrac{\partial(y,z)}{\partial(u,v)}|dudv \\ dzdx=|\dfrac{\partial(z,x)}{\partial(u,v)}|dudv \\ dxdy=|\dfrac{\partial(x,y)}{\partial(u,v)}|dudv dydz=(u,v)(y,z)dudvdzdx=(u,v)(z,x)dudvdxdy=(u,v)(x,y)dudv

代入上式即得:

d S = ∣ ∂ ( y , z ) ∂ ( u , v ) ∣ 2 + ∣ ∂ ( z , x ) ∂ ( u , v ) ∣ 2 + ∣ ∂ ( x , y ) ∂ ( u , v ) ∣ 2   d u d v = E G − F 2   d u d v dS=\sqrt{|\dfrac{\partial(y,z)}{\partial(u,v)}|^2+|\dfrac{\partial(z,x)}{\partial(u,v)}|^2+|\dfrac{\partial(x,y)}{\partial(u,v)}|^2}\,dudv= \sqrt{EG-F^2}\,dudv dS=(u,v)(y,z)2+(u,v)(z,x)2+(u,v)(x,y)2 dudv=EGF2 dudv

重积分换元法的证明参考

二重积分换元法的简便推导

多重积分换元法的证明

  • 7
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值