1.项目介绍
最近一个粉丝找我帮忙,弄一个关于B站视频弹幕的爬虫,我将记录完成过程中遇到的问题,和参考的网址,由于本人在爬虫方面就是个小趴菜,不会逆向解密,对CSS、html等知识掌握的不充分,所以如有更好的爬取方法,欢迎交流!
2.准备工作
详情查看爬取B站视频弹幕的简易教程(上)。
3.Protobuf解密
首先把之前得到的dm_pb2.py文件放在和代码放在一起,如图:
然后执行代码。
代码详解:
1.解析单个.so文件的核心函数
def parse_single_segso_file(file_path):
"""
解析单个seg.so文件,返回弹幕列表
"""
try:
# 读取二进制文件
with open(file_path, 'rb') as f:
data = f.read()
# 使用protobuf解析
danmaku_seg = Danmaku.DmSegMobileReply()
danmaku_seg.ParseFromString(data)
# 提取弹幕信息
danmu_list = []
for j in danmaku_seg.elems:
parse_data = text_format.MessageToString(j, as_utf8=True)
raw_data = parse_data.replace("\n", ",").rstrip(",")
# 解析弹幕属性
res = re.findall(
'''id: \d+,progress: (\d+),mode: (\d+),fontsize: (\d+),color: (\d+),midHash: "(.*?)",content: "(.*?)",ctime: (\d+),weight: (\d+),idStr: "(\d+)"''',
raw_data)
if res and len(res[0]) == 9:
item = {
"progress": int(res[0][0]), # 弹幕出现时间(毫秒)
"mode": int(res[0][1]), # 弹幕模式
"fontsize": int(res[0][2]), # 字体大小
"color": int(res[0][3]), # 颜色
"midHash": res[0][4], # 用户ID哈希
"content": res[0][5], # 弹幕内容
"ctime": int(res[0][6]), # 发送时间戳
"weight": int(res[0][7]), # 权重
"idStr": res[0][8], # ID字符串
}
# 转换时间格式
seconds = item["progress"] // 1000
minutes = seconds // 60
seconds %= 60
item["video_time"] = f"{minutes}:{seconds:02d}"
# 转换发送时间
item["send_time"] = datetime.fromtimestamp(item["ctime"]).strftime('%Y-%m-%d %H:%M:%S')
# 创建唯一标识用于去重
item["unique_id"] = f"{item['progress']}_{item['midHash']}_{item['content']}"
danmu_list.append(item)
return danmu_list
except Exception as e:
print(f"解析文件 {file_path} 时出错: {e}")
return []
这个函数的工作原理:读取.so二进制文件,使用预定义的protobuf结构(Danmaku.DmSegMobileReply)解析数据,遍历所有弹幕元素,提取关键信息,将时间戳转换为可读的视频时间点和发送时间,为每条弹幕创建唯一标识,用于后续去重。
2.合并多个弹幕文件并去重
def merge_danmu_files(folder_path, movie_name, pattern="seg*.so"):
"""
合并指定文件夹中所有seg.so文件的弹幕,并去重
"""
# 查找所有匹配的文件
file_paths = glob.glob(os.path.join(folder_path, pattern))
if not file_paths:
print(f"在路径 {folder_path} 中未找到任何 {pattern} 文件")
return False
print(f"找到 {len(file_paths)} 个文件待处理:")
for i, path in enumerate(file_paths):
print(f" {i + 1}. {os.path.basename(path)}")
# 处理所有文件并合并弹幕
all_danmu = []
unique_ids = set() # 用于去重
for file_path in file_paths:
danmu_list = parse_single_segso_file(file_path)
print(f"从 {os.path.basename(file_path)} 中提取到 {len(danmu_list)} 条弹幕")
# 去重并添加到总列表
new_count = 0
for item in danmu_list:
if item["unique_id"] not in unique_ids:
unique_ids.add(item["unique_id"])
all_danmu.append(item)
new_count += 1
print(f" 其中新增 {new_count} 条不重复弹幕")
print(f"合并后共有 {len(all_danmu)} 条不重复弹幕")
# 按时间排序
all_danmu.sort(key=lambda x: x["progress"])
# 创建DataFrame
df = pd.DataFrame(all_danmu)
# 选择需要的列并重命名
columns_to_keep = ['content', 'video_time', 'send_time', 'midHash']
columns_rename = {
'content': '弹幕内容',
'video_time': '视频时间点',
'send_time': '发送时间',
'midHash': '用户标识'
}
df = df[columns_to_keep].rename(columns=columns_rename)
# 保存为Excel
filename = os.path.join(folder_path, f"《{movie_name}》的弹幕.xlsx")
df.to_excel(filename, index=False)
print(f"成功合并并保存 {len(all_danmu)} 条弹幕到 {filename}")
return True
这个函数的关键步骤:查找指定文件夹中所有匹配模式的.so文件,逐个解析这些文件中的弹幕使用unique_id进行去重(避免重复弹幕),按视频时间点排序所有弹幕,选择有用的列并重命名为更易读的中文名称,将结果保存为Excel文件。
批量处理多个视频文件夹
def batch_process_movies(base_folder):
"""
批量处理多个视频的弹幕文件
参数:
base_folder: 包含多个电影子文件夹的基础路径
"""
# 获取所有子文件夹
movie_folders = [f for f in os.listdir(base_folder)
if os.path.isdir(os.path.join(base_folder, f))]
if not movie_folders:
print(f"在 {base_folder} 中未找到任何子文件夹")
return
print(f"找到 {len(movie_folders)} 个电影文件夹待处理:")
for i, folder in enumerate(movie_folders):
print(f" {i + 1}. {folder}")
# 处理每个视频文件夹
for folder in movie_folders:
folder_path = os.path.join(base_folder, folder)
print(f"\n开始处理视频 '{folder}'...")
merge_danmu_files(folder_path, folder)
print(f"视频 '{folder}' 处理完成")
print("-" * 60)
这个函数会遍历基础文件夹中的所有子文件夹,将每个子文件夹视为一个独立视频,并处理其中的所有.so文件。
完整代码:
import google.protobuf.text_format as text_format
import dm_pb2 as Danmaku
import pandas as pd
from datetime import datetime
import re
import os
import glob
def parse_single_segso_file(file_path):
"""
解析单个seg.so文件,返回弹幕列表
"""
try:
# 读取二进制文件
with open(file_path, 'rb') as f:
data = f.read()
# 使用protobuf解析
danmaku_seg = Danmaku.DmSegMobileReply()
danmaku_seg.ParseFromString(data)
# 提取弹幕信息
danmu_list = []
for j in danmaku_seg.elems:
parse_data = text_format.MessageToString(j, as_utf8=True)
raw_data = parse_data.replace("\n", ",").rstrip(",")
# 解析弹幕属性
res = re.findall(
'''id: \d+,progress: (\d+),mode: (\d+),fontsize: (\d+),color: (\d+),midHash: "(.*?)",content: "(.*?)",ctime: (\d+),weight: (\d+),idStr: "(\d+)"''',
raw_data)
if res and len(res[0]) == 9:
item = {
"progress": int(res[0][0]), # 弹幕出现时间(毫秒)
"mode": int(res[0][1]), # 弹幕模式
"fontsize": int(res[0][2]), # 字体大小
"color": int(res[0][3]), # 颜色
"midHash": res[0][4], # 用户ID哈希
"content": res[0][5], # 弹幕内容
"ctime": int(res[0][6]), # 发送时间戳
"weight": int(res[0][7]), # 权重
"idStr": res[0][8], # ID字符串
}
# 转换时间格式
seconds = item["progress"] // 1000
minutes = seconds // 60
seconds %= 60
item["video_time"] = f"{minutes}:{seconds:02d}"
# 转换发送时间
item["send_time"] = datetime.fromtimestamp(item["ctime"]).strftime('%Y-%m-%d %H:%M:%S')
# 创建唯一标识用于去重
item["unique_id"] = f"{item['progress']}_{item['midHash']}_{item['content']}"
danmu_list.append(item)
return danmu_list
except Exception as e:
print(f"解析文件 {file_path} 时出错: {e}")
return []
def merge_danmu_files(folder_path, movie_name, pattern="seg*.so"):
"""
合并指定文件夹中所有seg.so文件的弹幕,并去重
参数:
folder_path: 存放seg.so文件的文件夹路径
movie_name: 电影名称,用于生成输出文件名
pattern: 文件匹配模式,默认为"seg*.so"
"""
# 查找所有匹配的文件
file_paths = glob.glob(os.path.join(folder_path, pattern))
if not file_paths:
print(f"在路径 {folder_path} 中未找到任何 {pattern} 文件")
return False
print(f"找到 {len(file_paths)} 个文件待处理:")
for i, path in enumerate(file_paths):
print(f" {i + 1}. {os.path.basename(path)}")
# 处理所有文件并合并弹幕
all_danmu = []
unique_ids = set() # 用于去重
for file_path in file_paths:
danmu_list = parse_single_segso_file(file_path)
print(f"从 {os.path.basename(file_path)} 中提取到 {len(danmu_list)} 条弹幕")
# 去重并添加到总列表
new_count = 0
for item in danmu_list:
if item["unique_id"] not in unique_ids:
unique_ids.add(item["unique_id"])
all_danmu.append(item)
new_count += 1
print(f" 其中新增 {new_count} 条不重复弹幕")
print(f"合并后共有 {len(all_danmu)} 条不重复弹幕")
# 按时间排序
all_danmu.sort(key=lambda x: x["progress"])
# 创建DataFrame
df = pd.DataFrame(all_danmu)
# 选择需要的列并重命名
columns_to_keep = ['content', 'video_time', 'send_time', 'midHash']
columns_rename = {
'content': '弹幕内容',
'video_time': '视频时间点',
'send_time': '发送时间',
'midHash': '用户标识'
}
df = df[columns_to_keep].rename(columns=columns_rename)
# 保存为Excel
filename = os.path.join(folder_path, f"《{movie_name}》的弹幕.xlsx")
df.to_excel(filename, index=False)
print(f"成功合并并保存 {len(all_danmu)} 条弹幕到 {filename}")
return True
def batch_process_movies(base_folder):
"""
批量处理多个视频的弹幕文件
参数:
base_folder: 包含多个电影子文件夹的基础路径
"""
# 获取所有子文件夹
movie_folders = [f for f in os.listdir(base_folder)
if os.path.isdir(os.path.join(base_folder, f))]
if not movie_folders:
print(f"在 {base_folder} 中未找到任何子文件夹")
return
print(f"找到 {len(movie_folders)} 个视频文件夹待处理:")
for i, folder in enumerate(movie_folders):
print(f" {i + 1}. {folder}")
# 处理每个电影文件夹
for folder in movie_folders:
folder_path = os.path.join(base_folder, folder)
print(f"\n开始处理视频 '{folder}'...")
merge_danmu_files(folder_path, folder)
print(f"视频 '{folder}' 处理完成")
print("-" * 60)
# 示例用法:
if __name__ == "__main__":
# 1. 处理单个视频的多个seg.so文件
merge_danmu_files(r"C:\Users\HP\PycharmProjects\B站弹幕情感分析\B站电影弹幕的情感分析\爬虫\射雕英雄传_侠之大者", "射雕英雄传_侠之大者")
# 2. 或者批量处理多个视频
# batch_process_movies("./电影弹幕")
运行结果:
这样爬到的弹幕没有之前看到的那么多,可能问题出在那个URL的加密后的签名w_rid,不一致,导致获取的数量没那么多,但是这个方法获得的so文件,整体上是比较稳定的,开弹幕看到的,基本上都能获取到。
这里再说一下,如何批量处理,像这样:
然后使用
batch_process_movies("./视频")
就可以了,两个视频同时爬取完毕:
看一下最后的文件:
接下来就可以拿着这些做情感分析啦。
当然,还是这句话:本人爬虫水平有限,说白了也就是站在前人的肩膀上,以及借助AI,发现AI提供的代码还挺不错的,于是整理出来发给大家,如果有更好的思路和方法,欢迎讨论交流!