基于机器学习的二手车价格因素识别与预测

1.项目背景

随着二手车市场的快速发展,消费者对二手车的需求逐渐增加,然而,由于二手车的定价涉及多种复杂因素,不同条件下的车辆价值差异较大,如何精准地评估二手车的市场价值成为了一个亟待解决的问题。本项目通过数据分析和机器学习建模,尝试识别并量化影响二手车价格的主要因素,并构建一个价格预测模型,为消费者和行业从业者提供数据支持。

2.数据说明

字段 说明
id 唯一标识符
brand 品牌
model 具体型号
model_year 汽车的制造年份
milage 汽车的行驶里程
fuel_type 汽车所使用的燃料类型
engine 发动机规格
transmission 变速器类型
ext_col 外观颜色
int_col 内饰颜色
accident 车辆是否有事故或损坏的历史记录
clean_title 是否拥有健全良好的所有权证明
price 汽车标价

3.Python库导入及数据读取

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import re
from scipy.stats import chi2_contingency,ks_2samp,spearmanr,f_oneway
from datetime import datetime
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import RidgeCV, Ridge
from sklearn.preprocessing import StandardScaler

train_data = pd.read_csv("/home/mw/input/10128271/train.csv")
test_data = pd.read_csv("/home/mw/input/10128271/test.csv")

4.数据预处理

4.1数据预览

两个数据均存在不同程度的缺失值。

训练集中存在的重复值:0

测试集中存在的重复值:0

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值