利用机器学习和SHAP分析学生成绩影响因素

1.项目背景

学生的考试成绩受到多种复杂因素的共同影响,其中包括学习习惯、出勤率、家长参与、学校资源等多个方面。这些因素在不同的情境下对学生的学业表现产生直接或间接的作用,而理解这些因素的交互关系对于提升学生成绩至关重要,通过深入分析这些影响因素,教育工作者可以更有效地识别出关键的干预点,从而设计出有针对性的教育策略,同时,政策制定者也可以依据数据驱动的证据,为优化教育资源分配和改进教学质量提供科学依据。

本研究旨在综合运用多种数据分析方法,包括可视化分析、相关性分析和机器学习模型,全面探讨影响学生期末成绩的潜在因素,为了更精确地评估每个特征的重要性,还引入了 SHAP 解释模型,深入研究了模型中各因素对预测结果的贡献。这一系统化的分析框架不仅有助于揭示影响学生学业表现的关键因素,也为今后的教育研究提供了新的视角和方法。

2.数据说明

字段名 说明
Hours_Studied 每周学习的小时数
Attendance 出勤率(上课出席的百分比)
Parental_Involvement 家长参与程度(低,中,高)
Access_to_Resources 教育资源的可用性(低,中,高)
Extracurricular_Activities 课外活动参与情况(是,否)
Sleep_Hours 每晚平均睡眠时间(小时)
Previous_Scores 之前考试的分数
Motivation_Level 学生的动机水平(低,中,高)
Internet_Access 互联网接触情况(是,否)
Tutoring_Sessions 每月参加辅导课的次数
Family_Income 家庭收入水平(低,中,高)
Teacher_Quality 教师质量(低,中,高)
School_Type 学校类型(公立,私立)
Peer_Influence 同伴对学业表现的影响(积极,中立,消极)
Physical_Activity 每周平均体育活动时间(小时)
Learning_Disabilities 学习障碍(是,否)
Parental_Education_Level 父母的最高学历(高中,本科,研究生)
Distance_from_Home 家到学校的距离(近,适中,远)
Gender 学生性别(男,女)
Exam_Score 期末考试成绩

3.Python库导入及数据读取

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import spearmanr,pointbiserialr
from sklearn.model_selection import train_test_split,RandomizedSearchCV
from sklearn.metrics import mean_squared_error, r2_score,mean_absolute_error
from sklearn.ensemble import RandomForestRegressor
from sklearn.preprocessing import StandardScaler
from sklear
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值