Matplotlib_1

1、对于图像中按钮的使用讲解

在这里插入图片描述
1.图1红框位置可以选择性的放大内容,结果如图2所示
在这里插入图片描述
图1
在这里插入图片描述
图2
2.若想返回图1,可分别用下图蓝框和绿框,其中蓝框用于回到上一步,绿框用于回到初始位置
在这里插入图片描述
3.用下图中黑框中内容可以拖动图片
在这里插入图片描述
4.点击图3红框中的内容,得到图4,可利用图4改变图3边距
在这里插入图片描述
图3
在这里插入图片描述
图4
5.利用蓝框可以保存图片在这里插入图片描述

2、基本绘画

1.plt.plot 加载要展示的点,plt.show()将其展示

import matplotlib.pyplot as plt
import numpy as np

x=np.linspace(-1,1,50)
y=2*x+1
plt.plot(x,y)
plt.show()

在这里插入图片描述
2.对于plt.plot可用color确定颜色,用linewidth确定线宽,用linestyle确定线的方式

import matplotlib.pyplot as plt
import numpy as np

x=np.linspace(-1,1,50)
y=2*x+1
plt.plot(x,y,color="r",linewidth=1,linestyle="--")
plt.show()

在这里插入图片描述
3.用plt.scatter绘制散点图,可以添加参数s表大小,color表颜色

import matplotlib.pyplot as plt
import numpy as np

x=np.linspace(-5,5,50)
y=2*x+1
plt.figure()
plt.scatter(x,y,color='red')
plt.show()

在这里插入图片描述
4.可用plt.plot([x,x0],[y,y0])表连线

import matplotlib.pyplot as plt

plt.figure()
plt.plot([3,4],[3,0],color='red')
plt.show()

在这里插入图片描述

3、多图绘画

1.若需要两个单独的图像,分别用plt.figure(),得到如下两图,可以在plt.figure()添加参数,如num=确定图片序号,figsize( , )确定大小

import matplotlib.pyplot as plt
import numpy as np

x=np.linspace(-1,1,50)
y1=2*x+1
y2=x*x
plt.figure(num=3,figsize=(5,3))
plt.plot(x,y1)
plt.figure()
plt.plot(x,y2)
plt.show()

在这里插入图片描述
在这里插入图片描述

2.若要将两个图像并到一个图中,和用一个figure(),用下代码得到如图

import matplotlib.pyplot as plt
import numpy as np

x=np.linspace(-1,1,50)
y1=2*x+1
y2=x*x
plt.figure()
plt.plot(x,y1)
plt.plot(x,y2)
plt.show()

在这里插入图片描述

4、对轴线的干预

1.可以分别利用plt.xlim和plt.ylim设置x,y的范围

import matplotlib.pyplot as plt
import numpy as np

x=np.linspace(-1,1,50)
y=2*x+1
plt.plot(x,y,color="red",linewidth=1.0,linestyle="--")
plt.xlim(-1,1)
plt.ylim(-1,1)
plt.show()

在这里插入图片描述
2.可以通过xlabel,ylabel添加对x,y轴的说明

import matplotlib.pyplot as plt
import numpy as np

x=np.linspace(-1,1,50)
y=2*x+1
plt.plot(x,y,color="red",linewidth=1.0,linestyle="--")
plt.xlabel("I am x")
plt.ylabel("I am y")
plt.show()

在这里插入图片描述
3.利用plt.xticks或plt.yticks可以替换角标,对上图进行修改

import matplotlib.pyplot as plt
import numpy as np

x=np.linspace(-1,1,50)
y=2*x+1
plt.plot(x,y,color="red",linewidth=1.0,linestyle="--")
plt.xlabel("I am x")
plt.ylabel("I am y")
plt.yticks([-1,1,3],
           ['bad','good','very good'])
plt.show()

在这里插入图片描述

5、设置x,y轴

1.ax=plt.gra()选出轴线,ax.spines[‘所选轴线’].set_color(‘所选颜色’)来设置轴线颜色,如none设置为无

import matplotlib.pyplot as plt
import numpy as np

x=np.linspace(-1,1,50)
y=2*x+1
ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
plt.show()

在这里插入图片描述
2.ax.xaxis.set_ticks_position(‘bottom’)和ax.yaxis.set_ticks_position(‘left’) 默认底座标为x,左坐标为y

ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')

3.ax.spines[‘bottom’].set_position((‘data’,0))和ax.spines[‘left’].set_position((‘data’,0))将数据为零的点设置为轴所在点

import matplotlib.pyplot as plt
import numpy as np

x=np.linspace(-1,1,50)
y=2*x+1
plt.figure()
plt.plot(x,y)
ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
ax.spines['bottom'].set_position(('data',0))
ax.spines['left'].set_position(('data',0))
plt.show()

在这里插入图片描述
4.对数字坐标数字的设置for label in ax.get_xticklabels()+ax.get_yticklabels():确定所有坐标数字。设置数字大小:label.set_fontsize(大小),label.set_bbox(dict(facecolor=‘背景颜色’,edgecolor=‘边框颜色’))

import matplotlib.pyplot as plt
import numpy as np

x=np.linspace(-1,1,2)
y=2*x+1
plt.figure()
plt.plot(x,y,linewidth=1)
ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
ax.spines['bottom'].set_position(('data',0))
ax.spines['left'].set_position(('data',0))
for label in ax.get_xticklabels()+ax.get_yticklabels():
    label.set_fontsize(10)
  	label.set_bbox(dict(facecolor='r',edgecolor='b'))

plt.show()

在这里插入图片描述

6、设置图例

1.在plot用label设置线的名称,用plt.legend()打印出图例

import matplotlib.pyplot as plt
import numpy as np

x=np.linspace(-1,1,50)
y1=2*x+1
y2=x*x
plt.figure()
plt.plot(x,y1,label='one',color='red')
plt.plot(x,y2,label='two',color='blue')
plt.legend()
plt.show()

在这里插入图片描述
2.可以在plt.legend()中设置参数,如label,loc,其中loc重新设置位置,label重新设置名称

import matplotlib.pyplot as plt
import numpy as np

x=np.linspace(-1,1,50)
y1=2*x+1
y2=x*x
plt.figure()
plt.plot(x,y1,label='one',color='red')
plt.plot(x,y2,label='two',color='blue')
plt.legend(labels=['a','b'],loc='upper right')
plt.show()

在这里插入图片描述

7、标注

1.可用plt.annotate(‘标注文字’,xy=(标注的点),xycoords=‘data’(注:xy以data的值作为基准),xytext=(横坐标变化数,纵坐标变化数),fontsize=字体大小,arrowprops=dict(arrowstyle=‘箭头样式’,connectionstyle=‘arc3,rad=弧度数’))

import matplotlib.pyplot as plt
import numpy as np

x=np.linspace(-5,5,50)
y=2*x+1
plt.figure()
plt.plot(x,y)
x0=3
y0=x0*2+1
plt.scatter(x0,y0,color='b')
plt.annotate('good',xy=(x0,y0),xycoords='data',xytext=(+3,-1),fontsize=16,arrowprops=dict(arrowstyle='->',connectionstyle='arc3,rad=.2'))
plt.show()

在这里插入图片描述
2.plt.text(开始x位置,开始y位置,r’书写内容’,fontdict={‘size’:大小,'color:‘颜色’})

import matplotlib.pyplot as plt
import numpy as np

x=np.linspace(-5,5,50)
y=2*x+1
plt.figure()
plt.plot(x,y)
x0=3
y0=x0*2+1
plt.scatter(x0,y0,color='b')
plt.text(1,1,r'good',fontdict={'size':30,'color':'r'})
plt.show()

在这里插入图片描述
也有ha,va等在后续画柱状图会有使用敬请期待

Matplotlib_2

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

扬志九洲

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值