DataLoader划分Batch

import torchvision
from torch.utils.data import DataLoader
#这里使用的公用数据集CIFAR10
test_data = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
#将数据分成多个batch。drop_last当剩余数据不足以组成一个batch时删除这些数据。shuffle为每轮训练划分batch时划分结果是否一样
test_loader = DataLoader(dataset=test_data,batch_size=3,shuffle=True,drop_last=True)

features,target = test_data[0]
print(features.shape,"   ",target)




  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

姓蔡小朋友

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值