从0到1实现GCN——最详细的代码实现

最近论文中需要使用图卷积神经网络(GNN),看了一些关于GCN的代码,还有基于PyTorch Geometric Temporal的代码实现,在这里做一下记录。

GCN原始代码

关于GCN的原理在这里不进行过多阐述,其他文章里面解释的已经很详细了,这里就直接进入到代码的部分。GCN的公式如下:

G C N(A, X)=\sigma\left(\widehat{D}^{-\frac{1}{2}} \hat{A} \widehat{D}^{-\frac{1}{2}} X W\right)

其中A为邻接矩阵;X为t时刻输入的节点的特征矩阵;\widehat{D}^{-\frac{1}{2}} \hat{A} \widehat{D}^{-\frac{1}{2}}是近似的图卷积滤波器,其中\hat{A}=A+I_{N}(I_{N}是N维的单位矩阵);\hat{D}是度矩阵W代表需要神经网络训练的权重矩阵;\sigma \left ( \cdot \right )是激活函数Relu。

根据公式逐步实现GCN的代码如下:

def get_gcn_fact(adj):
    '''
    Function to
以下是使用GCN实现图嵌入的Python代码示例: 首先,我们需要导入必要的库: ```python import numpy as np import tensorflow as tf from tensorflow.keras.layers import Input, Dense from tensorflow.keras.models import Model ``` 接下来,我们定义一个GCN层: ```python class GCNLayer(tf.keras.layers.Layer): def __init__(self, output_dim): super(GCNLayer, self).__init__() self.output_dim = output_dim def build(self, input_shape): self.weight = self.add_weight(name='weight', shape=(input_shape[1], self.output_dim), initializer='glorot_uniform', trainable=True) def call(self, inputs): adj_matrix, features = inputs adj_matrix = tf.cast(adj_matrix, dtype=tf.float32) features = tf.cast(features, dtype=tf.float32) # Normalize adjacency matrix adj_sum = tf.reduce_sum(adj_matrix, axis=1, keepdims=True) adj_inv_sqrt = tf.math.rsqrt(adj_sum) adj_matrix = adj_matrix * adj_inv_sqrt * adj_inv_sqrt # Perform graph convolution output = tf.matmul(adj_matrix, features) output = tf.matmul(output, self.weight) return tf.nn.relu(output) ``` 我们的GCN层有一个输出维度参数,同时使用邻接矩阵和节点特征作为输入。在构建层时,我们定义了一个权重矩阵,该矩阵将用于计算图卷积。在调用中,我们首先对邻接矩阵进行归一化,然后使用归一化的邻接矩阵和节点特征计算图卷积。 接下来,我们定义一个图嵌入模型: ```python class GraphEmbedding(Model): def __init__(self, input_dim, hidden_dim, output_dim): super(GraphEmbedding, self).__init__() self.input_layer = Input(shape=(input_dim,)) self.hidden_layer1 = GCNLayer(hidden_dim)([adj_matrix, self.input_layer]) self.hidden_layer2 = GCNLayer(output_dim)([adj_matrix, self.hidden_layer1]) self.output_layer = Dense(output_dim, activation='softmax')(self.hidden_layer2) def call(self, inputs): x = self.input_layer(inputs) x = self.hidden_layer1([adj_matrix, x]) x = self.hidden_layer2([adj_matrix, x]) return self.output_layer(x) ``` 在这个模型中,我们使用两个GCN层和一个全连接层。我们首先定义一个输入层,然后将其传递给第一个GCN层。接下来,我们将第一个GCN层的输出传递给第二个GCN层,并将其输出传递给全连接层。在调用中,我们将输入传递给输入层,并将其输出传递给第一个GCN层,然后将其输出传递给第二个GCN层,并将其输出传递给全连接层。 最后,我们定义一些示例数据并运行模型: ```python # Example adjacency matrix and node features adj_matrix = np.array([[0, 1, 1, 0], [1, 0, 1, 1], [1, 1, 0, 1], [0, 1, 1, 0]]) features = np.array([[0, 0, 1], [1, 0, 0], [0, 1, 0], [1, 0, 1]]) # Create graph embedding model model = GraphEmbedding(input_dim=features.shape[1], hidden_dim=16, output_dim=8) # Compile model model.compile(optimizer='adam', loss='categorical_crossentropy') # Train model model.fit(features, labels, epochs=10, batch_size=1) ``` 这个例子中的邻接矩阵和节点特征表示了一个四个节点的简单无向图。我们使用16个隐藏层和8个输出维度来嵌入这个图。我们使用交叉熵损失函数来训练模型。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值