一、原理
背景
动态网络链路预测因其在生物学、社会学、经济学和工业领域的广泛应用而成为网络科学研究的热点,然而,由于网络结构随着时间的变化而变化,使得添加/删除链接的长期预测尤其困难。
与传统基于CNN的卷积处理操作不同,交通网络更适合被建模为图数据。卷积神经网络CNN只能处理欧式数据,比如图片、音频、视频等,这些数据具有平移不变性。图数据则是一种非欧式数据,由节点和链路集合构成,不具有平移不变性,也无法使用CNN进行处理。
GC-LSTM: graph convolution embedded LSTM for dynamic network link prediction
论文链接:https://doi.org/10.1007/s10489-021-02518-9
模型架构
文章主要提出了一个GC-LSTM模型,用于预测动态网络链路。对于每个图快照,GCN应用于捕捉节点的局部结构属性以及节点之间的关系,采用LSTM作为主要框架,学习动态网络中所有快照的时间特征。
目标
值得一提的是,该模型可以预测动态网络中链路的添加或删除,也就是对动态网络的邻接矩阵进行预测
。