算法通关村第一关 | 链表中环的问题

文章介绍了两种检测链表中是否存在环的方法:1)使用哈希表,遍历过程中如果发现节点已存在则说明有环;2)利用快慢指针,它们在环中必定会相遇。同时,文章详细解释了如何确定环的入口,通过将双指针重新设置在链表头和相遇点,相同速度移动直至相遇的位置即为入口。还提供了一种更复杂的算法,通过三次双指针操作来确定环的大小和入口节点。
摘要由CSDN通过智能技术生成

1. 判断链表中是否有环?

1.1 第一种方法使用Hash,遍历的时候将元素放入map中,如果有环,一定发生碰撞,发生碰撞的位置就是入口的位置。

代码如下:

 其中ListNode类。和力扣中的定义一样

    public ListNode hashMap(ListNode head){
        ListNode pos = head;
        //1.创建map
        HashSet<ListNode> visited = new HashSet<>();
        //2.边遍历边存边比较是否包含
        while(pos != null){
            if (visited.contains(pos)){
                return pos;
            }else {
                visited.add(pos);
            }
            pos = pos.next;
        }
        //返回null代表没有环
        return null;
    }

1.2 为什么快慢指针一定相遇?

确定是否有环,最有效也是最高级的方法,用双指针,一个快指针(一次走两步),一个慢指针(一次走一步),如果有环两个人一定会相遇。举例:操场跑圈,跑的快的同学会追上跑得慢的同学。

代码:

    //返回true代表有环
    public boolean shuangzhizhen(ListNode head){
        //1.排除空元素或者只有一个元素
        if (head == null || head.next ==null){
            return false;
        }
        //2.定义两个指针指向头部,从头遍历
        ListNode fast = head;
        ListNode slow = head;
        //3.快指针走两部,慢指针走一步
        while (fast != null && fast.next != null){
            fast = fast.next.next;
            slow = slow.next;
            if (fast == slow){
                return true;
            }
        }
        return false;
    }

1.3 确定入口的方法

        这个问题搞懂了会很有趣,

先说结论:按快慢指针找到相遇位置(假设图中的Z),然后将两指针分别放在链表头(X)和相遇位置(Z),并改为相同速度前进,则两个指针在开始位置相遇(Y).

(1)先看一圈就遇到的情况

在快指针第二次进入环的位置就相遇了:

1. fast,slow快慢指针,fast每走两步,slow走一步,知道在环中相遇,这个在问题开头也提到过。

2.第一次相遇:

fast走了:a + b + c +b

slow走了: a+b

计算:2*(a+b) = a + b + c +b  可得:a = c

因此,slow从Z出发,fast从头出发,相同的速度,一次一步,走相同的距离,会在Y处相遇。

(2)多圈之后相遇,

结论:相遇的时候快指针已经转l(n-1)圈,同样是上面的场景找入口位置,再写一次(按快慢指针找到相遇位置(假设图中的Z),然后将两指针分别放在链表头(X)和相遇位置(Z),并改为相同速度前进,则两个指针在开始位置相遇(Y).)n = 1,2,3...

计算: 

fast走了:a + n *(b+c) +b

slow走了:a + b

化简可得:a = c+ (n - 1)(a + b),因为b+c是一圈 LEN,则:

a= c+(n-1)LEN

又回到了上面a=c的场景,快指针会多走(n-1)圈两者相遇,再以相同的速度转圈,相遇的位置即是入口的位置,

代码实现:

    public ListNode cycle(ListNode head){
        if (head == null){
            return null;
        }
        ListNode fast = head, slow = head;
        //为null则没有环
        while (fast != null){
            slow = slow.next;
            if (fast.next != null){
                fast = fast.next.next;
            }else {
                return null;
            }
            if (fast == slow){
                //让一个指针从头开始,一个指针从相遇位置开始
                ListNode ptr = head;
                while (ptr != slow){
                    ptr = ptr.next;
                    slow = slow.next;
                }
                return ptr;
            }
        }
        return null;
    }

1.4 第二种确认入口的方法,

        这种方法代码实现较为复杂,用了三次双指针,

思想:如果我们确定连环的大小和末尾结点,该问题就退化成找倒数第K个结点的问题,

问题1: 判断环的大小,首先判断环的存在,快慢指针相遇,就证明有环,假设相遇点Z,让fast和slow,让 fast固定在该位置,slow遍历,当fast = slow 时,slow走过的距离就是环的长度

问题2:如何确定末尾结点,让快指针先走环的长度距离,然后慢指针从头开始走,此时快指针走到入口位置的时候,慢指针正好也走到入口的位置,

可以看图根据走的距离来想这个问题,看图,红色的线是快指针走的距离,蓝色线是慢指针走的 距离,蓝色少走了一个环的长度

 使用的是找倒数第k结点的方法来找入口

代码实现:

    public static ListNode cycle(ListNode head){
        //1.判断环找相遇点Z,第一次双指针
        if (head == null || head.next ==null){
            return null;
        }
        ListNode fast = head;
        ListNode slow = head;
        //相遇的结点
        ListNode z = head;
        while (fast != null && fast.next != null){
            fast = fast.next.next;
            slow = slow.next;
            if (fast == slow){
                z =fast;
            }
        }

        //2.计算环的长度,第二次双指针
        //先走一步位置错开,好判断,len从1开始
        fast = fast.next;
        int len = 1;
        while(fast != z){
            fast =fast.next;
            len++;
        }

        //3.使用倒数第K个结点的方法来找入口,第三次双指针
        slow = head;
        fast = head;
        while (len>0){
            fast = fast.next;
            len--;
        }
        while (fast != slow){
            fast =fast.next;
            slow =slow.next;
        }
        return slow;
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值