从图上可以看出 ShuffleNet v1在精度上较MobileNet有了不小的提升
使用组卷积能够减少参数的计算量,但是问题是各组之间没有信息交互。上图a所示每个颜色代表一个组。为了解决这个问题,作者提出了channel shuffle的思想,如上图b所示假设我们采用三个组,那么对每个组再分成三份将他们重新组合。
作者提到,在resnet中,1*1的卷积的计算量占到了93.4%。所以作者将所有的 1*1卷积换成了组卷积。
b图是针对步距为1的情况,c图是针对步距为2的情况。
作者给出的FLOPs的计算。组卷积的理论计算量是普通卷积的(g为组数)。
总结:
ShuffleNet v1就是将1*1卷积换成了组卷积,然后加入了channel shuffle的模块