ShuffleNet v1 自学笔记

        从图上可以看出 ShuffleNet v1在精度上较MobileNet有了不小的提升

        使用组卷积能够减少参数的计算量,但是问题是各组之间没有信息交互。上图a所示每个颜色代表一个组。为了解决这个问题,作者提出了channel shuffle的思想,如上图b所示假设我们采用三个组,那么对每个组再分成三份将他们重新组合。

        作者提到,在resnet中,1*1的卷积的计算量占到了93.4%。所以作者将所有的 1*1卷积换成了组卷积。

         b图是针对步距为1的情况,c图是针对步距为2的情况。

        作者给出的FLOPs的计算。组卷积的理论计算量是普通卷积的\frac{1}{g}(g为组数)。

总结:

ShuffleNet v1就是将1*1卷积换成了组卷积,然后加入了channel shuffle的模块

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值