概率论--随机变量及随机变量函数

随机变量

意义:随机变量的引入,使得随机试验中的各种事件可以通过随机变量的关系式表达出来,使得我们可以利用数学分析的方法对随机试验的结果进行深入的研究和讨论
在有些随机试验中,实验结果与数值无关,我们需要引入一个变量来表示其各种结果,即试验结果数值化,我们称其为随机变量

常见随机变量分类

{ 离 散 型 随 机 变 量 非 离 散 型 随 机 变 量 { 连 续 型 随 机 变 量 其 他 其 他 \begin{cases} 离散型随机变量\\ 非离散型随机变量\begin{cases}连续型随机变量\\其他\end{cases}\\ 其他 \end{cases} {
该随机试验的每一个结果都对应着变量X的一个确定的取值,因此变量X的样本空间S上的函数
X = X ( e ) X=X(e) X=X(e)
随机变量举例

随机变量XX的可能取值
抛硬币3次,正面朝上次数0,1,2,3
盒子中含有8个球,5红3白,不放回的连续取出3个,取出球中红球的个数0,1,2,3
连续掷骰子6次,设每次朝上的点数为m,m小于4的次数0,1,2,3,4,5,6

随机变量的分布函数

描述一个随机变量,不仅要说明它能够取得哪些值,还要指出取得这些值的概率,只有这样才能真正完整刻画一个随机变量,所以引入随机变量的分布函数概念

对于随机变量X,下面函数就称为X的分布函数
F ( x ) = P { X ≤ x } , − ∞ < x < ∞ F(x)=P\{X\leq x\},-\infty<x<\infty F(x)=P{Xx},<x<
因此已知X的分布函数,我们就知道X落在任意区间 ( x 1 , x 2 ] (x_1,x_2] (x1,x2]的概率
P { x 1 < X ≤ x 2 } = F ( x 2 ) − F ( x 1 ) , P\{x_1<X\leq x_2\}=F(x_2)-F(x_1), P{x1<Xx2}=F(x2)F(x1),
任何随机变量都有分布函数,定义域为 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+),不同随机变量可能有不同的分布函数

分布函数的性质

  1. 单调不减性
  2. 非负有界性
  3. 右连续

P { X = a } = P { X ≤ a } − P { X ≤ a } = F ( a ) − F ( a − 0 ) P { a ≤ X ≤ b } = P { X ≤ b } − P { X ≤ a } = F ( b ) − F ( a ) P { X > b } = 1 − P { X ≤ b } = 1 − F ( b ) P { X ≥ b } = 1 − P { X < b } = 1 − F ( b − 0 ) \begin{aligned} &P\{X=a\}=P\{X\leq a\}-P\{X\leq a\}=F(a)-F(a-0)\\ &P\{a\leq X\leq b\}=P\{X\leq b\}-P\{X\leq a\}=F(b)-F(a)\\ &P\{X>b\}=1-P\{X\leq b\}=1-F(b)\\ &P\{X\geq b\}=1-P\{X< b\}=1-F(b-0)\\ \end{aligned} P{X=a}=P{Xa}P{Xa}=F(a)F(a0)P{aXb}=P{Xb}P{Xa}=F(b)F(a)P{X>b}=1P{Xb}=1F(b)P{Xb}=1P{X<b}=1F(b0)

离散型随机变量及分布律

有些随机变量的全部取值是有限个或者无限多个,这种随机变量为离散型随机变量

如果离散型随机变量X的所有可能取值为 x k ( k = 1 , 2 , . . . ) x_k(k=1,2,...) xk(k=1,2,...),X取得各个可能值得概率,即 X = x k X=x_k X=xk的概率为
P ( X = x k ) = p k , k = 1 , 2 , . . . P(X=x_k)=p_k,k=1,2,... P(X=xk)=pk,k=1,2,...
上式称为离散型随机变量X的概率分布或分布律
用表格表示X的分布律

X x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3 x n x_n xn
p i p_i pi p 1 p_1 p1 p 2 p_2 p2 p 3 p_3 p3 p n p_n pn

常见离散型随机变量分布

伯努利(0-1)分布

如果随机变量X只可能有0、1两个值,它的分布律为
P { X = k } = p k ( 1 − p ) n − k P\{X=k\}=p^k(1-p)^{n-k} P{X=k}=pk(1p)nk
就称X服从以p为参数的伯努利分布

二项分布

如果试验E只有两个可能的结果: A 和 A ˉ A和\bar A AAˉ,那么称E为伯努利试验。将试验E进行n次,那么就称这一连串重复(每次试验中P(A)=p保持不变)的独立(各次试验的结果互不影响)试验为n重伯努利试验

随机变量X表示n重伯努利试验中事件A发生的次数,那么其可能取值为:0,1,2,…,由于各次试验是相互独立的,因此事件A在指定的k次试验中发生,其他n-k次试验中A不发生的概率为
p ⋅ p , ⋅ ⋅ ⋅ , p ⋅ p ⏞ k 个 ⋅ ( 1 − p ) ⋅ ( 1 − p ) , ⋅ ⋅ ⋅ , ( 1 − p ) ⋅ ( 1 − p ) ⏞ n − k 个 = p k ⋅ ( 1 − p ) n − k \overbrace{ p\cdot p,\cdot\cdot\cdot,p\cdot p }^{k\text{个}}\cdot \overbrace{ (1-p)\cdot (1-p),\cdot\cdot\cdot,(1-p)\cdot (1-p) }^{n-k\text{个}}=p^k\cdot(1-p)^{n-k} pp,,pp k(1p)(1p),,(1p)(1p) nk=pk(1p)nk
从n次试验中抽取k次试验使得在这些试验中事件A发生,根据排列组合共有 C n k C^k_n Cnk种抽取方法,所以
P ( X = k ) = C n k p k ( 1 − p ) n − k P(X=k)=C^k_np^k(1-p)^{n-k} P(X=k)=Cnkpk(1p)nk
那么有

∑ k = 0 n P { X = k } = ∑ k = 0 n C n k p k ( 1 − p ) n − k = 1 \sum_{k=0}^nP\{X=k\}=\sum^n_{k=0}C_n^kp^k(1-p)^{n-k}=1 k=0nP{X=k}=k=0nCnkpk(1p)nk=1

我们称随机变量X服从参数为n,p的二项分布,记为 X ∼ b ( n , p ) X\sim b(n,p) Xb(n,p)
当n=1时二项分布化为伯努利分布
P { X = k } = p k ( 1 − p ) 1 − k P\{X=k\}=p^k(1-p)^{1-k} P{X=k}=pk(1p)1k

二项分布问题分析举例1

流水线上有若干产品,其中一级品概率为0.2,现在从中随机抽查20只,20只元件中恰有k只为一级品的概率?

该事件为不放回抽样,但是由于这批元件的总数很大,且抽查的元件数量对于元件总数又很小,因此可以当做放回抽样处理,这样就满足了n重伯努利试验的重复和独立的特点
将检查一个元件看其是否为一级品视为一次试验,设随机事件X为20只元件中一级品的只数,那么所求概率为
P ( X = k ) = C 20 k 0. 2 k 0. 8 20 − k P(X=k)=C^k_{20}0.2^k0.8^{20-k} P(X=k)=C20k0.2k0.820k
那么X的分布律为

X01234567891011
P0.0120.0580.1370.2050.2180.1750.1090.0550.0220.0070.002<0.001
二项分布问题分析举例2

某人进行射击,命中率为0.02,至少必须进行多少次,才能使至少命中靶子一次的概率不少于0.9

把一次射击看做一次试验,设X为n次射击中命中的次数

P ( X = k ) = C n k 0.0 2 k 0.9 8 n − k , k = 0 , 1 , 2 , ⋅ ⋅ ⋅ P(X=k)=C^k_n0.02^k0.98^{n-k},k=0,1,2,\cdot\cdot\cdot P(X=k)=Cnk0.02k0.98nk,k=0,1,2,
由于 P { X ≥ 1 } ≥ 0.9 P\{X\geq1\}\geq0.9 P{X1}0.9,因此有 1 − P { X = 0 } ≥ 0.9 1-P\{X=0\}\geq0.9 1P{X=0}0.9,即
1 − C n 0 ⋅ 0.0 2 0 ⋅ 0.9 8 n − 0 ≥ 0.9 , 即 0.9 8 n ≤ 0.1 , n l n ( 0.98 ) ≤ l n ( 0.1 ) , n ≥ l n ( 0.1 ) l n ( 0.98 ) ≈ 114 1-C_n^0\cdot0.02^0\cdot0.98^{n-0}\geq0.9,\\ 即0.98^n\leq0.1, \\nln(0.98)\leq ln(0.1), \\n\geq\frac{ln(0.1)}{ln(0.98)}\approx114 1Cn00.0200.98n00.9,0.98n0.1,nln(0.98)ln(0.1),nln(0.98)ln(0.1)114

泊松分布

泊松分布在现实应用中很常见,很多随机指标或随机现象都服从泊松分布
某医院一天内的急诊人数,某地区一段时间间隔内发生的交通事故数量
一段时间内由放射性物质发出的、落在某区域内的质点数
如果随机变量X的所有可能取值为0,1,2…,而且取得各个值的概率为
p { X = k } = λ k k ! e − λ , k = 0 , 1 , 2 , . . . p\{X=k\}=\frac{\lambda^k}{k!}e^{-\lambda},k=0,1,2,... p{X=k}=k!λkeλ,k=0,1,2,...
那么我们称随机变量X服从参数为 λ \lambda λ的泊松分布,记作 X ∼ π ( λ ) X\sim \pi(\lambda) Xπ(λ)

泊松定理

用泊松分布逼近二项分布

意义:根据二项分布的计算公式可得,计算 P { X = k } P\{X=k\} P{X=k}要计算若干个数的幂,当总数n的值很大时我们发现这种计算相当耗费时间,就是我们考虑有没有哪种分布能够在总数n很大时替代二项分布计算式子?泊松定理的出现完美解决了这一问题

λ > 0 \lambda>0 λ>0是某一个常数,n是任意正整数,设 n P n = λ nP_n=\lambda nPn=λ(这是定理的一个条件),那么对于任意固定的非负整数k,有
lim ⁡ n → ∞ C n k p k ( 1 − p ) n − k = λ k k ! e − λ \lim_{n\to \infty}C_n^kp^k(1-p)^{n-k}=\frac{\lambda ^k}{k!}e^{-\lambda} nlimCnkpk(1p)nk=k!λkeλ

由定理的条件 n P n = λ nP_n=\lambda nPn=λ可得,当n很大时, P n P_n Pn必定很小,因此上述定理此时变为
P ( X = k ) = C n k p k ( 1 − p ) n − k ≈ λ k k ! e − λ P(X=k)=C^k_np^k(1-p)^{n-k}\approx\frac{\lambda ^k}{k!}e^{-\lambda} P(X=k)=Cnkpk(1p)nkk!λkeλ

根据定理的条件: n P n = λ nP_n=\lambda nPn=λ,当n很大,p很小时,二项分布的概率值与泊松分布的概率值接近,因此上式可以用来作为二项分布概率的近似计算

利用泊松定理近似计算二项分布概率值举例

某保险公司共有客户10000人,每名客户每年需要支付12元的保险金,据调查人群中人们每年发生意外事故的概率为0.002,当客户发生意外事故时,公司需要向其家属支付2000元的赔偿金,求保险公司亏本的概率?

分析题意,当一年中该公司客户中没有人发生意外事故,那么该公司将会获利 2500 × 12 = 30000 元 2500\times 12=30000元 2500×12=30000
假设随机变量X为一年中公司客户中发生意外事故的人数,由题可知X服从二项分布: X ∼ B ( 2500 , 0.002 ) X\sim B(2500,0.002) XB(2500,0.002),由于n很大,p很小,所以我们可以使用泊松定理近似计算概率值
故所求概率为
P { 2000 X > 30000 } = P { X > 15 } = 1 − P { X ≤ 14 } = 1 − F ( 14 ) ≈ 1 − ∑ k = 0 14 e − 5 5 k k ! ≈ 0.000069 \begin{aligned} P\{2000X>30000\}&=P\{X>15\}\\ &=1-P\{X\leq 14\}\\ &=1-F(14)\\ &\approx 1-\sum_{k=0}^{14}\frac{e^{-5}5^k}{k!}\\ &\approx 0.000069 \end{aligned} P{2000X>30000}=P{X>15}=1P{X14}=1F(14)1k=014k!e55k0.000069

连续型随机变量及概率密度

定义:对于随机变量X的分布函数F(x),如果存在非负函数f(x)使得对于任意实数x有 F ( x ) = P { X ≤ x } = ∫ − ∞ x f ( t ) d t F(x)=P\{X\leq x\}=\int_{-\infty}^xf(t)dt F(x)=P{Xx}=xf(t)dt,那么就称X为连续型随机变量,f(x)为X的概率密度函数或称概率密度

概率密度函数f(x)性质

  1. f ( x ) ≥ 0 f(x)\geq0 f(x)0
  2. ∫ − ∞ + ∞ f ( x ) d x = 1 \int^{+\infty}_{-\infty}f(x)dx=1 +f(x)dx=1
  3. P { x 1 ≤ x ≤ x 2 } = F ( x 2 ) − F ( x 1 ) = ∫ x 1 x 2 f ( x ) d x P\{x_1\leq x\leq x_2\}=F(x_2)-F(x_1)=\int_{x_1}^{x_2}f(x)dx P{x1xx2}=F(x2)F(x1)=x1x2f(x)dx
  4. f ( x ) 在 点 x 处 连 续 , 则 F ′ ( x ) = f ( x ) f(x)在点x处连续,则F'(x)=f(x) f(x)xF(x)=f(x)

常见连续型随机变量分布

均匀分布

如果连续型随机变量X的概率密度函数为
f ( x ) = { 1 b − a , a < x < b 0 , 其 他 f(x)=\begin{cases} \frac{1}{b-a},a<x<b\\0,其他 \end{cases} f(x)={ba1,a<x<b0,就称X在区间 ( a , b ) (a,b) (a,b)上服从均匀分布,记作 X ∼ U ( a , b ) X\sim U(a,b) XU(a,b),并且其分布函数为
F ( x ) = { 0 , x < a x − a b − a , a ≤ x ≤ b 1 , b < x F(x)=\begin{cases} 0,x<a\\ \frac{x-a}{b-a},a\leq x\leq b\\1,b<x \end{cases} F(x)=0,x<abaxa,axb1,b<x

利用均匀分布求解的实例

某公交站10min一辆车,某乘客会在两趟车之间的任意时刻来到公交站,求其等车时间不超过5min的概率?

假设该乘客到达车站的时刻为随机变量X,假设该乘客到站时刚离去的那趟车的离去时刻为 t t t,根据题意我们知道,X在区间 [ t , t + 10 ] [t,t+10] [t,t+10]上服从均匀分布,其概率密度为
f ( x ) = { 1 10 , t < x < t + 10 0 , 其 他 f(x)=\begin{cases} \frac{1}{10},t<x<t+10\\0,其他 \end{cases} f(x)={101,t<x<t+100,
等候时间不超过5分钟,即X落在区间 [ t + 5 , t + 10 ] [t+5,t+10] [t+5,t+10]上,故其概率为
P { t + 5 ≤ X ≤ t + 10 } = ∫ t + 10 t + 5 1 10 d x = 0.5 P\{t+5\leq X\leq t+10\}=\int_{t+10}^{t+5}\frac{1}{10}dx=0.5 P{t+5Xt+10}=t+10t+5101dx=0.5

指数分布

如果随机变量X的概率密度函数为
f ( x ) = { λ e − λ x , x > 0 0 , 其 他 f(x)=\begin{cases} \lambda e^{-\lambda x},&x>0 \\0,&其他 \end{cases} f(x)={λeλx,0,x>0其中 λ > 0 \lambda>0 λ>0,那么称X服从参数为 λ \lambda λ的指数分布,简记为 X ∼ e ( λ ) X\sim e(\lambda) Xe(λ),并且其分布函数为
f ( x ) = { λ e − λ x , x > 0 0 , x ≤ 0 f(x)=\begin{cases} \lambda e^{-\lambda x},&x>0 \\0,&x\leq 0 \end{cases} f(x)={λeλx,0,x>0x0

正态分布

19世纪高斯加以推广,又称为高斯分布,如果随机变量X的概率密度为
f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 , − ∞ < x < + ∞ f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}},-\infty<x<+\infty f(x)=2π σ1e2σ2(xμ)2,<x<+那么就称随机变量X服从参数为 μ , σ 2 \mu,\sigma^2 μ,σ2的正态分布,记为 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2),并且其分布函数为
F ( x ) = 1 2 π σ ∫ − ∞ x e − ( t − μ ) 2 2 σ 2 d t , F(x)=\frac{1}{\sqrt{2\pi}\sigma}\int_{-\infty}^{x}e^{-\frac{(t-\mu)^2}{2\sigma^2}}dt, F(x)=2π σ1xe2σ2(tμ)2dt,

正态分布是概率论中最重要的连续分布,一个随机变量如果受到许多随机因素的影响,而其中每一个因素都不起主导作用,那么该变量一般都会服从正态分布

正态分布的一个性质

X X X Y = a X + b Y=aX+b Y=aX+b
X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2) Y ∼ N ( a μ + b , ( a σ ) 2 ) Y\sim N(a\mu+b,(a\sigma)^2) YN(aμ+b,(aσ)2)

标准正态分布:

当随机变量X服从正态分布且参数 μ = 0 , σ = 1 \mu=0,\sigma=1 μ=0,σ=1时,我们称此时X服从标准正态分布,此时其概率密度函数和分布函数通常使用 φ ( x ) 和 Φ ( x ) \varphi (x)和\Phi(x) φ(x)Φ(x)表示
φ ( x ) = 1 2 π e − x 2 2 Φ ( x ) = 1 2 π ∫ − ∞ x e − t 2 2 d t \varphi (x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}\\ \Phi(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{x}e^{-\frac{t^2}{2}}dt φ(x)=2π 1e2x2Φ(x)=2π 1xe2t2dt

标准正态分布的重要性在于任何一个一般的正态分布都可以通过线性变换转化为标准正态分布

随机变量函数的分布

现实中某些指标我们不能直接通过试验得到,而是往往通过试验加上数学运算得到,比如,某次试验我们得到的结果为随机变量X,它表示某个正方形的边长,而我们想要了解的是该正方形的体积V,那么我们就说V就是随机变量X的函数,因此我们现在要解决的问题是,已知随机变量X的分布,计算得到V的分布

离散型随机变量

求解某离散型随机变量的函数的分布

某随机变量X的分布律如下,求 Y = ( X − 1 ) 2 Y=(X-1)^2 Y=(X1)2的分布律

X1234
P0.10.30.20.4

解: P { Y = 0 } = 0.1 P { Y = 1 } = P { X = 2 } = 0.3 P { Y = 4 } = P { X = 3 } = 0.2 P { Y = 9 } = P { X = 4 } = 0.4 P\{Y=0\}=0.1 \\P\{Y=1\}=P\{X=2\}=0.3 \\P\{Y=4\}=P\{X=3\}=0.2 \\P\{Y=9\}=P\{X=4\}=0.4 P{Y=0}=0.1P{Y=1}=P{X=2}=0.3P{Y=4}=P{X=3}=0.2P{Y=9}=P{X=4}=0.4
所以 Y = ( X − 1 ) 2 Y=(X-1)^2 Y=(X1)2的分布律为

Y0149
P0.10.30.20.4

连续型随机变量

已知X的分布函数 F X ( x ) F_X(x) FX(x)或者概率密度函数 f X ( x ) f_X(x) fX(x),那么可以求得随机变量函数 Y = g ( X ) Y=g(X) Y=g(X)的分布函数为
F X ( y ) = P { Y ≤ y } = P { g ( X ) ≤ y } = ∫ g ( X ) ≤ y f X ( x ) d x F_X(y)=P\{Y\leq y\}=P\{g(X)\leq y\}=\int _{g(X)\leq y}f_X(x)dx FX(y)=P{Yy}=P{g(X)y}=g(X)yfX(x)dx

密度函数为
f Y ( y ) = F Y ′ ( y ) f_Y(y)=F_Y'(y) fY(y)=FY(y)

定理

随机变量X具有概率密度 f X ( x ) f_X(x) fX(x),如果y=g(x)处处可导且恒有 g ′ ( x ) < 0 g'(x)<0 g(x)<0,那么 Y = g ( X ) Y=g(X) Y=g(X)是一个连续型变量,其概率密度为
f Y ( y ) = { f Y ( y ) = f [ h ( y ) ∣ h ′ ( y ) ∣ ] , α < y < β 0 , 其 他 其 中 h ( y ) 为 g ( x ) 的 反 函 数 f_Y(y)=\begin{cases}f_Y(y)=f[h(y)|h'(y)|],&\alpha<y<\beta\\ 0,& 其他 \end{cases} 其中h(y)为g(x)的反函数 fY(y)={fY(y)=f[h(y)h(y)],0,α<y<βh(y)g(x)

定理的应用实例

已知 X ∼ U ( 0 , 1 ) X\sim U(0,1) XU(0,1),求下列随机变量函数的概率密度函数

  1. Y = e X Y=e^X Y=eX
  2. Y = − 2 ln ⁡ X Y=-2\ln X Y=2lnX

(1)由题中 x ∈ ( 0 , 1 ) x\in(0,1) x(0,1),那么 y = e x , y ′ > 0 y=e^x,y'>0 y=ex,y>0 Y = e X Y=e^X Y=eX在区间(0,1)上单调递增
y = e x y=e^x y=ex,那么 x = h ( y ) = l n y x=h(y)=lny x=h(y)=lny,所以 h ′ ( y ) = 1 y h'(y)=\frac{1}{y} h(y)=y1
所以 Y = e x Y=e^x Y=ex的概率密度函数为
f Y ( y ) = { f X ( ln ⁡ y ) ∙ ∣ 1 y ∣ , 1 < y < e 0 , 其 他 f_Y(y)= \begin{cases}f_X(\ln y)\bull|\frac{1}{y}|,&1<y<e\\ 0,& 其他 \end{cases} fY(y)={fX(lny)y1,0,1<y<e
又因为
f X ( x ) = { 1 , 0 < x < 1 0 , 其 他 f_X(x)= \begin{cases}1,&0<x<1\\ 0,& 其他 \end{cases} fX(x)={1,0,0<x<1
所以
f Y ( y ) = { 1 y , 1 < y < e 0 , 其 他 f_Y(y)= \begin{cases}\frac{1}{y},&1<y<e\\ 0,& 其他 \end{cases} fY(y)={y1,0,1<y<e
(2)由于随机变量X服从均匀分布,所以其概率密度函数为 f X ( x ) = { 1 , 0 < x < 1 0 , 其 他 f_X(x)= \begin{cases}1,&0<x<1\\ 0,& 其他 \end{cases} fX(x)={1,0,0<x<1
x ∈ ( 0 , 1 ) x\in(0,1) x(0,1),那么 Y = − 2 l n X > 0 y ′ = − 2 x < 0 , Y = − 2 l n X Y=-2lnX>0y'=-\frac{2}{x}<0,Y=-2lnX Y=2lnX>0y=x2<0,Y=2lnX在区间(0,1)上单调递减,
y = − 2 l n x y=-2lnx y=2lnx,那么 x = h ( y ) = e − y 2 x=h(y)=e^{-\frac{y}{2}} x=h(y)=e2y,所以 h ′ ( y ) = d ( e − y 2 ) d y h'(y)=\frac{d(e^{-\frac{y}{2}})}{dy} h(y)=dyd(e2y)
所以Y的概率密度函数为

f Y ( y ) = { f X ( e − y 2 ∣ d ( e − y 2 ) d y ∣ ) , 0 < e − y 2 < 1 0 , 其 他 = { 1 2 e − y 2 , y > 0 0 , 其 他 \begin{aligned} f_Y(y)=&\begin{cases}f_X(e^{-\frac{y}{2}}|\frac{d(e^{-\frac{y}{2}})}{dy}|),&0<e^{-\frac{y}{2}}<1\\ 0,& 其他 \end{cases}\\ & =\begin{cases}\frac{1}{2}e^{-\frac{y}{2}},&y>0\\ 0,& 其他 \end{cases}\\ \end{aligned} fY(y)={fX(e2ydyd(e2y)),0,0<e2y<1={21e2y,0,y>0
从上面的概率密度函数我们可以看出, Y = − 2 ln ⁡ X Y=-2\ln X Y=2lnX服从参数为 1 2 \frac{1}{2} 21的指数分布

  • 4
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
概率论中的二维随机变量是指由两个随机变量组成的一种数学模型。它可以用来描述两个不同事件之间的关系和相互影响。 以下是一些与二维随机变量相关的重要知识点: 1. 概率密度函数(PDF):对于连续型二维随机变量,概率密度函数描述了其取值的概率分布情况。它可以通过对二维随机变量进行积分来计算概率。 2. 边缘分布:边缘分布指的是二维随机变量中每个单独变量的概率分布。通过边缘分布,可以计算某一个变量的概率,而忽略其他变量的取值情况。 3. 条件分布:条件分布指的是在给定另一个变量取值的条件下,某一个变量的概率分布。条件分布可以用来描述两个变量之间的依赖关系和相互影响。 4. 相关性和独立性:二维随机变量的相关性描述了两个变量之间的线性关系程度,可以通过协方差或相关系数来衡量。如果两个变量相互独立,则它们之间没有任何线性关系。 5. 边缘期望和协方差:边缘期望是指每个变量的期望值,可以用来描述随机变量的平均取值情况。协方差衡量了两个变量之间的总体线性关系,可以通过协方差矩阵来表示。 6. 线性变换和线性组合:对二维随机变量进行线性变换或线性组合可以得到新的随机变量。这些新的变量可能具有特定的概率分布和相关性。 这些是概率论中关于二维随机变量的一些重要知识点,希望能对你有所帮助。如果你还有其他问题,请继续提问。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夺笋123

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值