详读西瓜书+南瓜书第4章

4.1  基本流程

        决策树是基于树结构来进行决策的。一般的,一棵决策树包含一个根节点、若干个内部结点和若干个叶结点。根结点包含样本全集,叶结点对应于决策结果,其他每个结点则对应于一个属性测试。其基本流程遵循简单且直观的“分而治之”策略。

输入:训练集

\small D\doteq \left \{ (x_{1},y_{1}), (x_{2},y_{2})...... (x_{m},y_{m})\right \}

          属性集

        \small A\doteq {a_{1},a_{2}......a_{d}}

过程:函数TreeGenerate(D,A)

1:生成结点node;

2:if D中样本全属于同一类别C  then

3:        将node标记为C类叶结点;  return

4:end if

5:if \small A\doteq \phi OR D中样本在A上取值相同  then

6:        将node标记为叶结点,其类别标记为D中样本数最多的类;  return

7:end if

8:从A中选择最优划分属性\small a_{*};

9:for \small a_{*}的每一个值\small a_{*}^{\nu } do

10:        为node生成一个分支;令\small D_{\nu }表示D中在\small a_{*}上取值为\small a_{*}^{\nu }的样本子集;

11:        if\small D_{\nu }为空  then

12:                将分支结点标记为叶结点,其类别标记为D中样本最多的类;  return

13:         else

14:                 以TreeGenerate(\small D_{\nu },A\{\small a_{*}}) 为分支结点

15:         end if

16:end for

输出:以node为根结点的一棵决策树.

4.2  划分选择

1)  信息熵(information entropy)

        信息熵是度量样本集合纯度最常用的一种指标。假定样本集合D中第k类样本所占的比例为\small p_{k}(k=1,2,......|y|),则D的信息熵定义为

\small Ent(D)\doteq -\sum_{k=1}^{|y|}p_{k}log_{2}p_{k}

        \tiny Ent(D)的值越小,则D的纯度越高。

2)  信息增益(infromation gain)

        属性a对样本集D进行划分所获得的信息增益为

\small Gain(D,a)=Ent(D)-\sum_{v=1}^{\nu }\frac{|D^{v }|}{|D|}Ent(D^{v})

        一般而言,信息增益越大,则意味着使用属性a来进行划分所获得的纯度提升越大。著名的ID3决策树学习算法就是以信息增益为准则来选择划分属性。

3)  增益率(gain ratio)

        信息增益准则对可取值数目较多的属性有所偏好,为减少这种偏好可能带来的不利影响,著名的C4.5决策树算法不直接使用信息增益,而是使用增益率来选择最优划分属性。增益率定义为

\small Gain\_ratio(D,a)=\frac{Gain(D,a)}{IV(a)}

其中

\small IV(a)=-\sum_{v=1}^{\nu }\frac{|D^{v}|}{|D|}log_{2}\frac{|D^{v}|}{|D|}

称为属性a的“固有值”(intrinsic value)。增益率准则对可取值数目较少的属性有所偏好。因此C4.5算法并不是直接选择增益率最大的候选划分属性,而是使用了一个启发式:先从候选划分属性中找出信息增益高于平均水平的属性,再从中选择增益率最高的。

4)  基尼指数(Gini index)

        CART决策树使用基尼指数来选择划分属性。数据集D的纯度可用基尼值来度量:

\small Gini(D)=\sum_{k=1}^{|y|}\sum_{k'\neq k}^{}p_{k}p_{k'}=1-\sum_{k=1}^{|y|}p_{k}^{2}

        直观来说,Gini(D)反映了从数据集D中随机抽取两个样本,其类别标记不一致的概率,因此Gini(D)越小,则数据集D的纯度越高。

        属性a的基尼指数定义为

\small Gini\_index(D,a)=\sum_{v=1}^{\nu }\frac{|D^{v}|}{|D|}Gini(D^{v})

4.3  剪枝处理

        剪枝(pruning)是决策树学习算法对付“过拟合”的主要手段。

1)  预剪枝(prepruning)

        预剪枝是对决策树每个结点在划分前先进行估计,若当前结点的划分不能带来泛化性能提升,则停止划分。预剪枝使得决策树很多分支没有展开,降低了过拟合的风险,减少了决策树的训练和测试时间开销,但带来了欠拟合的风险。

2)  后剪枝(postpruning)

        后剪枝是先从训练集生成一棵完整的决策树,然后自底向上地对非叶结点进行考察,若能带来泛化性能提升,则该子树替换为叶结点。一般来说,后剪枝决策树的欠拟合风险小,泛化性能往往优于预剪枝决策树,但其训练时间开销比未剪枝和预剪枝决策树大得多。

4.4  连续与缺失值

1)  连续

        决策树中的连续属性采用离散化技术。最简单的策略是采用二分法。可将划分点设为该属性在训练集中出现的不大于中位点的最大值。样本集D基于划分点t二分后的信息增益为

\small Gain(D,a)=max_{(t\epsilon T_{a})}Gain(D,a,t)=max_{(t\epsilon T_{a})}Ent(D)-\sum_{\lambda \epsilon {\{-,+\}}}^{}\frac{|D_{t}^{\lambda }|}{|D|}Ent(D_{t}^{\lambda })

2)  缺失值

        遇到不完整样本,即样本的某些属性值缺失,需解决两个问题:(1)如何在属性值缺失的情况下进行划分属性选择?(2)给定划分属性,若样本在该属性上的值缺失,如何对样本进行划分?

         其信息增益计算式为

 \small Gain(D,a)=\rho \times Gain(\tilde{D},a)=\rho \times (Ent(\tilde{D})-\sum_{v=1}^{\nu }\tilde{r_{v}}Ent(\tilde{D^{v}}))

4.5  多变量决策树

        多变量决策时(multivariate decision tree)是能实现斜划分甚至更复杂划分的决策树。以实现斜划分的多变量决策树为例,在此类决策树中,非叶结点不再是仅对某个属性,而是对属性的线性组合进行测试。

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值