一维谐振子的哈密顿量为:
H ^ = p ^ 2 2 m + 1 2 m ω 2 x ^ 2 \hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{x}^2 H^=2mp^2+21mω2x^2
其中, x ^ \hat{x} x^ 和 p ^ \hat{p} p^ 分别是位置和动量算符, m m m 是质量, ω \omega ω 是谐振子的角频率。
一维谐振子第 n n n 个能级的波函数为:
ψ n ( x ) = 1 2 n n ! ( m ω π ℏ ) 1 / 4 e − m ω x 2 2 ℏ H n ( m ω ℏ x ) \psi_n(x) = \frac{1}{\sqrt{2^n n!}}\left(\frac{m\omega}{\pi\hbar}\right)^{1/4} e^{-\frac{m\omega x^2}{2\hbar}} H_n\left(\sqrt{\frac{m\omega}{\hbar}}x\right) ψn(x)=2nn!1(πℏmω)1/4e−2ℏmωx2Hn(ℏmωx)
其中, H n H_n Hn 是 Hermite 多项式。第一激发态对应 n = 1 n=1 n=1,其波函数为:
ψ 1 ( x ) = 1 2 ( m ω π ℏ ) 1 / 4 e − m ω x 2 2 ℏ 2 ( m ω 2 ℏ x ) \psi_1(x) = \frac{1}{\sqrt{2}}\left(\frac{m\omega}{\pi\hbar}\right)^{1/4} e^{-\frac{m\omega x^2}{2\hbar}} \sqrt{2}\left(\sqrt{\frac{m\omega}{2\hbar}}x\right) ψ1(x)=21(πℏmω)1/4e−2ℏmωx22(2ℏmωx)
根据量子力学的基本假设,物理量的期望值可以表示为:
⟨ A ^ ⟩ = ∫ − ∞ + ∞ ψ ∗ ( x ) A ^ ψ ( x ) d x \langle\hat{A}\rangle = \int_{-\infty}^{+\infty} \psi^*(x)\hat{A}\psi(x)dx ⟨A^⟩=∫−∞+∞ψ∗(x)A^ψ(x)dx
因此,一维谐振子处于第一激发态时, x 2 x^2 x2 的平均值为:
⟨ x ^ 2 ⟩ 1 = ∫ − ∞ + ∞ ψ 1 ∗ ( x ) x ^ 2 ψ 1 ( x ) d x = 2 ( ℏ 2 m ω ) ∫ − ∞ + ∞ x 2 ∣ ψ 1 ( x ) ∣ 2 d x = 2 ( ℏ 2 m ω ) ∫ − ∞ + ∞ x 2 1 2 ( m ω π ℏ ) 1 / 2 e − m ω x 2 ℏ x 2 d x = ℏ m ω \begin{aligned} \langle\hat{x}^2\rangle_1 &= \int_{-\infty}^{+\infty} \psi_1^*(x)\hat{x}^2\psi_1(x)dx \\ &= 2\left(\frac{\hbar}{2m\omega}\right)\int_{-\infty}^{+\infty} x^2|\psi_1(x)|^2dx \\ &= 2\left(\frac{\hbar}{2m\omega}\right) \int_{-\infty}^{+\infty} x^2 \frac{1}{2} \left(\frac{m\omega}{\pi\hbar}\right)^{1/2} e^{-\frac{m\omega x^2}{\hbar}} x^2 dx \\ &= \frac{\hbar}{m\omega} \end{aligned} ⟨x^2⟩1=∫−∞+∞ψ1∗(x)x^2ψ1(x)dx=2(2mωℏ)∫−∞+∞x2∣ψ1(x)∣2dx=2(2mωℏ)∫−∞+∞x221(πℏmω)1/2e−ℏmωx2x2dx=mωℏ
因此,一维谐振子处于第一激发态时, x 2 x^2 x2 的平均值为 ℏ m ω \frac{\hbar}{m\omega} mωℏ。