haddop RPC如何处理IO

本文详细介绍了Hadoop RPC服务端如何利用NIO处理客户端请求。通过一个线程监听连接,建立Connection对象并维护请求队列。Handler线程处理Call请求,Responder线程则负责响应输出,利用Selector进行写操作。整个过程高效且有序,确保了RPC服务的稳定运行。
摘要由CSDN通过智能技术生成

Hadoop的RPC如何处理IO

Hadoop在RPC的Server端使用了NIO的方式来处理客户端的请求。

Server端没有线程池,Listener类会打开一个线程,该类拥有一个Selector,该Selector负责接收链接,处理链接的输入流。一旦一个客户端链接被接受,Listener会构造一个Connection对象。该Connection对象作为客户端SocketChannel的attachment,这样,后面的每一次处理客户端的SocketChannel,都会用到Connection。该Connection维护了客户端的Socket,以及要发送的响应列表(responseQueue)。Listener的doRead方法试图读取一个完整的方法请求,如果成功,会构造一个Call对象,该对象代表了一个方法请求的调用,维护了请求参数,和该请求所在的Connection。这个Call对象会被放到一个阻塞队列(callQueue),该队列是Server的一个实例变量。

请求会在一个单独的线程被处理,Handler类负责这项工作。Handler在一个while(running)循环里,不断调用callQueue的take方法,试图拿到一个方法调用的信息(Call),然后调用一个抽象的call方法处理这个调用。处理完成之后,调用setupResponse方法为该Call对象生成相应的字节流,该字节流是Call的一个属性,类型为ByteBuffer。

Responder是一个单独的线程来处理api调用的相应输出。该Responder维护了一个Selector类型的,名为writeSelector的实例变量。该Selector负责管理各客户端的输出处理。上面的描述指出,Handler负责处理call的请求处理,之后创建该call的输出流,并将该call放入到该call对应的Connection对象的responseQueue的尾端(调用addLast)。如果此时responseQueue只有一个call对象,调用Responder.processResponse(LinkedList responseQueue, boolean inHandler)方法,并传递参数inHandler为true。在Responder的processResponse方法中,首先会调用channelWrite方法将responseQueue里的第一个call对象的输出流写到SocketChannel中,如果没有响应字节流没有写完,会调用writeSelector.wakeup,接着调用channel.register(writeSelector, SelectionKey.OP_WRITE, call),使writeSelector监听该SocketChannel的OP_WRITE事件。

在Responder的while(running)循环中,会调用processResponse处理每一个Connection的responseQueue。如果该responseQueue里的call都处理完成,会调用key.interst(0)取消writeSelector对该SocketChannel的OP_WRITE事件监听。

Spring Boot和Hadoop是两个不同的技术,Spring Boot是一个Java Web开发框架,而Hadoop是一个大数据处理框架。它们并没有直接的联系。如果您想要使用Spring Boot来操作Hadoop集群,则可以使用Hadoop提供的Java API,或者使用一些第三方的Java库来完成操作。 如果您要使用Hadoop 3.x版本,可以按照以下步骤进行操作: 1. 在pom.xml文件中添加hadoop-client依赖: ``` <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-client</artifactId> <version>3.x.x</version> </dependency> ``` 2. 配置Hadoop集群的信息,例如core-site.xml、hdfs-site.xml、mapred-site.xml等,可以通过以下方式: ``` @Configuration public class HadoopConfig { @Bean public Configuration hadoopConfiguration() throws Exception { Configuration conf = new Configuration(); conf.set("fs.defaultFS", "hdfs://namenode:8020"); conf.set("mapreduce.framework.name", "yarn"); conf.set("yarn.resourcemanager.address", "resourcemanager:8032"); conf.set("yarn.resourcemanager.scheduler.address", "resourcemanager:8030"); conf.set("mapreduce.jobhistory.address", "historyserver:10020"); conf.set("mapreduce.jobhistory.webapp.address", "historyserver:19888"); return conf; } } ``` 3. 编写Java程序,使用Hadoop提供的API进行操作: ``` @Configuration public class HadoopConfig { @Autowired private Configuration hadoopConfiguration; @Bean public FileSystem fileSystem() throws Exception { return FileSystem.get(hadoopConfiguration); } } ``` 以上是一个简单的示例,您可以根据自己的需求进行修改和扩展。如果您还有其他问题,请随时提出。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鱼香Ross

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值