YOLOv8通过Python文件运行训练和检测

学习记录

目录

一. train.py

二. predict.py

三.参数


参数

model    传入的model.yaml文件或者model.pt文件,用于构建网络和初始化,不同点在于只传yaml文件的话参数会随机初始化
data        训练数据集的配置yaml文件
epochs    训练轮次,默认100
patience    早停训练观察的轮次,默认50,如果50轮没有精度提升,模型会直接停止训练
batch      训练批次,默认16
imgsz    训练图片大小,默认640
save    保存训练过程和训练权重,默认开启
save_period    训练过程中每x个轮次保存一次训练模型,默认-1(不开启)
cache    是否采用ram进行数据载入,设置True会加快训练速度,但是这个参数非常吃内存,一般服务器才会设置
device    要运行的设备,即cuda device =0或Device =0,1,2,3或device = cpu
workers    载入数据的线程数。windows一般为4,服务器可以大点,windows上这个参数可能会导致线程报错,发现有关线程报错,可以尝试减少这个参数,这个参数默认为8,大部分都是需要减少的
project    项目文件夹的名,默认为runs
name    用于保存训练文件夹名,默认exp,依次累加
exist_ok    是否覆盖现有保存文件夹,默认Flase
pretrained    是否加载预训练权重,默认Flase
optimizer    优化器选择,默认SGD,可选[SGD、Adam、AdamW、RMSProP]
verbose    是否打印详细输出
seed    随机种子,用于复现模型,默认0
deterministic    设置为True,保证实验的可复现性
single_cls    将多类数据训练为单类,把所有数据当作单类训练,默认Flase
image_weights    使用加权图像选择进行训练,默认Flase
rect    使用矩形训练,和矩形推理同理,默认False
cos_lr    使用余弦学习率调度,默认Flase
close_mosaic    最后x个轮次禁用马赛克增强,默认10
resume    断点训练,默认Flase
lr0    初始化学习率,默认0.01
lrf    最终学习率,默认0.01
label_smoothing    标签平滑参数,默认0.0
dropout    使用dropout正则化(仅对训练进行分类),默认0.0

一. train.py

from ultralytics import YOLO

# 加载模型
model = YOLO("D:/DeepL/ultralytics-main/ultralytics/cfg/models/v8/yolov8n.yaml") # 从头开始构建新模型  #训练模型(.pt权重文件)

# Use the model
results = model.train(data="D:/DeepL/ultralytics-main/data.yaml", epochs=100, batch=16, imgsz=160, device=0)  # 训练模型 

device=cpu/0/1/2,其他参数直接加后面

二. predict.py

from ultralytics import YOLO

model = YOLO('D:/DeepL/ultralytics-main/weights/best.pt')
results = model("D:/DeepL/ultralytics-main/testimages", conf=0.05, device=0, save=True)

### YOLOv8 `train.py` 文件内容及用法 YOLOv8 是基于 PyTorch 的目标检测框架,其训练脚本 `train.py` 提供了丰富的命令行选项来控制模型的训练过程。以下是该文件的主要功能及其常见参数说明。 #### 主要功能模块 1. **初始化环境** - 加载配置文件并解析命令行参数。 - 设置随机种子以确保实验可重复性。 2. **加载数据集** - 使用指定的数据集配置文件 `.yaml` 来读取处理图像与标签信息[^2]。 3. **构建模型** - 可选地从预训练权重文件中恢复模型状态或创建新的未初始化模型实例[^1]。 4. **定义优化器学习率调度器** - 根据超参数配置文件中的设定调整初始学习率其他相关属性。 5. **启动训练循环** - 对于每一个 epoch,在整个批次上迭代执行前向传播、损失计算以及反向梯度更新操作。 - 支持多GPU分布式训练模式(DDP)[^3]。 6. **保存检查点** - 定期将当前最佳性能的模型权重及其他元数据存储到磁盘以便后续评估或继续训练。 #### 常见命令行参数解释 | 参数名 | 描述 | | --- | --- | | `--weights` | 初始模型路径;支持 yolov8n, yolov8s 等版本名称,默认为空表示不使用预训练模型 | | `--cfg` 或者 `--config` | 自定义模型架构配置文件路径(.yaml),默认采用官方提供的基础结构 | | `--data` | 数据集描述文件路径(.yaml), 包含类别列表、训练集验证集划分等必要字段 | | `--epochs` | 总共运行多少次完整的遍历周期(Epoch) | | `--batch-size` | 单个批处理大小(Batch Size) | | `--imgsz`, `--img`, `--img-size` | 输入图片分辨率尺寸(px),通常设为 640x640 | | `--rect` | 是否开启矩形推理(Rectangular Training),有助于减少填充带来的影响 | | `--resume` | 如果存在,则尝试从中断处重新开始训练 | #### Python 脚本调用示例 ```python import argparse if __name__ == '__main__': parser = argparse.ArgumentParser() # 添加必要的命令行参数... args = parser.parse_args() # 开始训练流程... ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值