Yolov8--python运行

该文介绍了如何利用Ultralytics库在Python中运用YOLOv8模型进行训练和预测。通过核心代码展示了如何加载预训练模型进行单图预测,以及如何对文件夹、文本文件中的图片路径和网络摄像头流进行实时预测,特别应用于火烟检测场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一,基本核心代码

二,代码扩展案例


前置文章:超详细yolov8训练数据集流程

 一,基本核心代码

from ultralytics import YOLO

model = YOLO("xxxx.pt")# 或者(用于训练): model = YOLO("yolov8x.yaml")

image = "xxx.jpg"# 或者图片文件夹

model.predict(image, save=True)# 返回image的预测结果

# 训练:model.train(data="数据集路径.yaml", epochs=200, batch=16)
# 训练数据集类型看yolov8训练流程

二,代码扩展案例

1,训练

from ultralytics import YOLO

model = YOLO("./weights/yolov8n.pt")

data = "./dataset/car
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值