计算SRH

根据Bunkers等人(2000)的方法,风暴的移动速度(即风暴移动矢量)可以通过以下步骤计算:

1. **平均风速(0-6 km非压强加权)**:计算0到6公里层内的平均风速,作为风暴的基本平流分量。
2. **垂直风切变矢量**:计算从0到6公里层的垂直风切变矢量。
3. **偏移量D**:偏移量为7.5 m/s,平行于垂直风切变矢量的正交方向,向右(顺时针方向)偏移,用于右移超级单体(左移超级单体则向左偏移)。

最终公式如下:
- 右移超级单体:\( V_{\text{storm}} = V_{\text{mean}} + D \times \hat{k} \times V_{\text{shear}} / |V_{\text{shear}}| \)
- 左移超级单体:\( V_{\text{storm}} = V_{\text{mean}} - D \times \hat{k} \times V_{\text{shear}} / |V_{\text{shear}}| \)

下面是Python代码实现,用于计算风暴移动速度并进一步计算SRH:

```python
import xarray as xr
import numpy as np
from metpy.calc import storm_relative_helicity, get_layer, wind_speed
from metpy.units import units

# 加载ERA5数据
ds = xr.open_dataset("your_file_path.nc")  # 替换为实际数据路径
u = ds['u']  # u风速 (m/s)
v = ds['v']  # v风速 (m/s)
pressure = ds['pressure'] * units.hPa  # 压力 (hPa)

# 定义偏移量D为7.5 m/s
deviation = 7.5 * units('m/s')

# 计算风暴移动速度的函数
def calculate_storm_motion(u, v, pressure):
    # 计算0-6 km非压强加权的平均风速作为风暴的基本平流分量
    mean_u, mean_v, _ = get_layer(pressure, u, v, depth=6000 * units.meter)
    u_mean = mean_u.mean()
    v_mean = mean_v.mean()
    
    # 计算垂直风切变矢量
    shear_u = u.sel(pressure=pressure[0]) - u.sel(pressure=pressure[-1])
    shear_v = v.sel(pressure=pressure[0]) - v.sel(pressure=pressure[-1])
    
    # 计算风暴移动速度的右移分量
    shear_magnitude = np.sqrt(shear_u**2 + shear_v**2)
    storm_u = u_mean + deviation * (-shear_v / shear_magnitude)
    storm_v = v_mean + deviation * (shear_u / shear_magnitude)
    
    return storm_u, storm_v

# 计算每个网格点的风暴移动速度
storm_motion_u, storm_motion_v = calculate_storm_motion(u, v, pressure)

# 计算SRH的函数
def calculate_srh(u, v, pressure, storm_u, storm_v, layer_top=3000 * units.meter):
    srh_values = []
    
    for i in range(len(ds.date)):
        srh_date = []
        
        for lat_idx in range(len(ds.latitude)):
            for lon_idx in range(len(ds.longitude)):
                # 提取单点的风速剖面
                u_profile = u[i, :, lat_idx, lon_idx] * units('m/s')
                v_profile = v[i, :, lat_idx, lon_idx] * units('m/s')
                pressure_profile = pressure.values
                
                # 使用MetPy计算SRH,传入风暴移动速度
                srh_0_3km, _, _ = storm_relative_helicity(
                    pressure_profile, u_profile, v_profile, depth=layer_top, 
                    storm_u=storm_u[lat_idx, lon_idx], storm_v=storm_v[lat_idx, lon_idx]
                )
                srh_date.append(srh_0_3km.magnitude)  # 提取数值
        
        srh_values.append(srh_date)
    
    # 转换为xarray DataArray
    srh_da = xr.DataArray(srh_values, coords=[ds.date, ds.latitude, ds.longitude], dims=["date", "latitude", "longitude"])
    return srh_da

# 计算并保存SRH
srh_da = calculate_srh(u, v, pressure, storm_motion_u, storm_motion_v)
srh_da.name = "SRH_0_3km"
srh_da.attrs['units'] = 'm^2/s^2'
srh_da.to_netcdf("srh_0_3km.nc")
```

### 说明
- **Bunkers方法**:实现风暴移动速度,假设右移超级单体偏离风切变方向7.5 m/s。
- **SRH计算**:调用风暴移动速度并计算SRH,最后保存到NetCDF文件中。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值