基于多通道心电信号的心律失常诊断的图卷积网络和互信息

本文提出利用图卷积网络(GCN)和互信息(MI)提高心律失常诊断准确性的方法。将个体ECG信息表示为图,用MI衡量导联关系。使用查普曼大学数据库验证,选15层GCN - MI为最佳模型,其诊断心律失常的准确性达99.71%,高于现有方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《Developing Graph Convolutional Networks and Mutual Information for Arrhythmic Diagnosis Based on Multichannel ECG Signals》

摘要

心血管疾病,如心律失常,作为世界上主要的死亡原因,可以使用心电图(ECG)自动诊断。基于心电图的诊断显著减少了人为错误。本研究的主要目的是利用从心电图导联中提取的互信息(MI)指数,利用一种新的图卷积网络(GCN)来提高心律失常诊断的准确性,并对个体(心血管疾病患者)的各种类型的心律失常进行分类。在这项研究中,第一次将使用MI作为邻接矩阵测量的12个ECG导联的关系用开发的GCN表示,并将其纳入基于ECG的诊断方法。采用交叉验证方法选择训练组和测试组。该方法在查普曼大学最近发表的大型心电数据库中得到了验证。选择15层的GCN-MI结构作为所选数据库的最佳模型,表明对不同类型的节奏进行分类具有很高的准确性。采用GCN-MI对心律类型进行分类的敏感性、精密度、特异性和准确性指标分别为98.45%、97.89%、99.85%和99.71%。本研究的结果及其与其他研究的比较表明,与现有方法相比,考虑MI指数来衡量心导联之间的关系,使得GCN在检测和分类心律失常类型方面的性能有所提高。例如,具有身份邻接矩阵(或GCN- id)的GCN的上述分类指标分别为68.24%、72.83%、95.24%和92.68%。

关键字: 心律失常类型基于ECG的诊断;图卷积网络;卷积神经网络;互信息

一、介绍

心血管疾病是世界范围内死亡的主要原因之一,给社会造成了沉重的负担[1-3]。心律失常是一种心律失常,被认为是心血管疾病中非常重要的一类[4]。有不同类型的心律失常,有不同的症状,如心跳过慢或过快(窦性心动过缓(SB)和房性心动过速(AT)),以及不规则的节律缺失或扭曲的部分和间隔(室性早搏(AVC))。心房颤动(AFIB)是最常见和最危险的心律失常类型,与严重心力衰竭和中风的风险显著增加有关[5]。其他类型的心律失常包括窦性心动过速(ST)、窦性不规则(SI)、室上性心动过速(ST)、房室结折返性心动过速(AVNRT)、房室折返性心动过速(AVRT)和窦性房转徘徊性心律(SAAWR)。

心律失常的诊断方法包括心电图、动态心电图和事件监测器、植入式环路记录仪、压力测试、超声心动图(ECGs)和血管造影。尽管在过去的100年里发展了许多先进的无创测量技术,但12导联心电图仍然在世界范围内得到广泛应用,并成为广泛心脏疾病无创评估的事实上的标准[1]。可及性和可负担性是无创心电图的另一个优点[6]。在12导联心电图中,有10个电极被放置在患者的胸部表面。然后从12个不同的点测量心脏的总电位,并记录一段时间(通常为10秒)[7]。

根据心电图的波形来诊断心律失常的类型。正确、快速诊断心律失常对心脏病的预防和治疗非常重要[6]。对心电图的误解可能导致不正确的临床决策和不良后果[8]。心电判读需要足够的专业知识和训练,而观察者的知识直接影响准确性,因此应用心电信号自动诊断心律失常,有助于防止人为错误[3,9,10]。最近,利用神经网络和深度学习技术来分析和提取心电数据的特征受到了极大的关注[11-13]。

传统的机器学习方案受数据的影响很大,需要进行复杂的预处理,如噪声消除和数据归一化。此外,它们容易过度提取不必要的特征、过滤器设计和额外的特征排序,最终引入另一种分类算法[14]。能够稍微缓解这些问题的一种神经网络是卷积神经网络(CNN),它在没有人工监督的情况下自动检测重要特征[15]。卷积神经网络(CNN)是一类人工神经网络,已广泛应用于各种计算机视觉和机器学习应用,并在各种医学领域受到相当大的吸引力,包括放射学、癌症病理学、心血管疾病诊断等。CNN通过使用多个构建块,如卷积层、池化层、全连接层,通过反向传播自动、自适应地学习特征的空间层次[15,16]。CNN也是解决模式识别问题的有用工具[17],在图像、声音、信号分析等方面有着广泛的应用。

有几项研究使用不同架构的卷积网络,通过深度学习ECG数据来诊断心律失常[4,18 - 24]。在这些研究中,调整后的卷积网络在提高诊断准确率方面发挥了重要作用。由于受试者记录有限,特别是从同一个体提取的心电图跳动,这些研究中使用的数据量并不足够。这种数据稀缺性会降低所构建模型的泛化能力。此外,由于ECG从不同的角度(导联)检查心功能,这些导联具有可以测量的共同和有用的信息,应该包含在[4,18 - 24]中报道的开发的深度学习方法中。换句话说,考虑12导联心电数据的结构或导联之间的关系对于更好地训练cnn从而有效地学习心电数据是非常重要的。

本研究的主要目的是了解导联结构,并利用它们来提高心律失常的诊断和分类的准确性。因此,本研究提出GCN作为一种有效的深度学习建模工具,使我们能够包含导联结构,以提高心律失常诊断的准确性,并对各种类型的心律失常进行分类

GCNs的优势之一是其学习复杂结构的能力,通过对图而不是像素图像执行卷积操作[25],这使得它们在对图结构数据建模方面非常有效[26]。图作为一种数据结构,由节点和连接组成,可用于对复杂的现实世界现象进行建模。与CNN在学习数据时需要使用固定的平方核不同,GCNs可以利用相邻节点之间的相关性,在随机不规则区域进行灵活的卷积[27]。

 在本研究中,每个人收集的心电图数据被视为一个图,心导联作为节点。利用互信息指数(MI)来衡量公共导联数据之间的共享信息,并向网络提供连接权值,以提高学习性能。对于具有复杂依赖结构的数据,可以使用Pearson相关指数,因为每个引线的电位记录都表示为一个时间序列,并且它们的依赖关系使用自相关指数来测量。然而,MI可以测量两个时间序列之间的线性和非线性关系,并使用熵函数计算它们之间的公共信息[28]。在本研究中,我们使用MI指数来衡量导联之间的相关性,然后在它们之间构建一个图,这是有效学习GCN所需要的。本研究构建的基于gcn - mi的模型将用于心血管疾病患者心律失常的诊断和分类。

简而言之,本研究的主要贡献是:

•将个体的ECG信息表示为图形。

•使用MI指数来衡量引线关系并构建图表。

•首次提出GCN-MI用于心律失常的诊断和分类。

•检查一个相当大的最新ECG数据集(至少比[4,18 - 24]中使用的数据集大10,000倍)。

 二、材料和方法

1、数据

本研究使用了查普曼大学和公立医院(浙江大学医学院绍兴医院)新开放的12导联心电图信号研究数据库。该数据库的目的是使科学界能够对心律失常和其他心血管疾病进行新的研究,它包含来自10,646名患者的12个心电图,采样率为500 Hz,其中有11个正常节律和67个额外的心血管疾病。ECG样本由专业人员标记,每个人在10秒内采集,其中每个ECG样本包含5000行和12列。

从统计学上讲,样本数量等于10646人,其心电图结果测量为10646个12导联5000点可变时间序列。在每个变量(引线)中,以5000匝(每10秒)为单位记录电流强度。

数据包括5956名男性和4690名女性,其中17%的窦性心律正常,83%的窦性心律至少有一项异常(表1)[5]。该数据集中显示了节奏类型的相对频率(图1)。图2显示了按性别划分的每种节奏的频率。

2、图卷积网络

(1) 图卷积网络介绍

图神经网络于2009年被引入,它是基于图论的,是各种类型图网络的基础。GCNs作为目前最流行的图网络之一,主要采用傅里叶变换与泰勒展开公式相结合的方法来提高滤波性能,并以其优异的性能被广泛应用于疾病分类中[29]。GCNs是一组深度神经网络,它们在图上执行称为卷积的数学运算,其目的是对图、节点或连接进行分类[30]。

图可以用G = (V, A)表示,V \in R_{N\times f}是顶点信号的矩阵,它显示了N个节点,每个节点有f个特征。A \in R_{N\times N}表示邻接矩阵,表示边信息和节点间的关系。如果节点i和节点j之间存在一条边,则A (i, j)表示该边的权值i = 1,2…N, j = 1,2…N,否则A (i, j) = 0。

 (2)图的卷积

图数据可以简单地显示边缘和顶点的信息,为了处理和学习这些信息,必须考虑卷积滤波方法来同时过滤边缘和顶点信息。这是一种遵循局部邻域图过滤策略的图卷积方法的空间方法。

图的卷积函数基于图附近的矩阵多项式(详见Zhang et al ., 2019[25])。

这个滤波器被定义为图邻接矩阵k度的多项式。A是邻接矩阵,它的幂表示给定顶点的步数乘以假设的滤波系数。在卷积运算中,标量系数hi控制了一个顶点的邻居的参与,因此得到的滤波矩阵为H \in R_{N\times N}。(1)中定义的顶点V与滤波器H的卷积是如下所示的矩阵乘法

V_{out}=HV_{in} 

式中Vout, V_{in} \in R_{N}, Vin为输入顶点矩阵,Vout为滤波后的顶点矩阵。关于如何调整该模型以及如何计算所选图(即H)的卷积滤波器的进一步细节,请参见附录A。

(3)所提出GCN的结构

第一步是准备输入图,使活动节点和非活动节点相等并被认为相等。此外,一个单独的条目将被视为它旁边的标签,并且该步骤的输出将在下一步中作为图z0输入。

在第二步中,将在该图上分几层执行卷积操作,以便根据相邻的边对每个节点应用所需的过滤器(图3)。该架构显示了具有两层对流和12个节点的图的GCN。在卷积层中,这个位置在每个阶段用红色节点表示。将第一层卷积z1的输出给第二层卷积,生成z2作为第二层的输出。

在第三步中,通过线性化创建的属性并将其传递给Softmax层来决定响应变量。要做到这一点,首先通过将从z0到z2的不同排列所创建的所有图形放在一起,将生成几个线性向量,这些向量中的每一个都称为属性向量。图3显示了第三步中连接操作的两个步骤。这两个阶段的输出将是一个线性向量,它将在最后一级进入完全连接的神经网络。最终,使用这个称为Softmax的网络,将创建决策边界。

3、互信息

心电图从不同的角度(导联)检查心功能,这些导联有可以测量的共同信息(通信)。本研究使用MI指数测量这种关系,并在邻接矩阵下将其引入GCN。

下面将每条引线假设为一个变量,并解释两个变量(X, Y)之间MI的计算方法。

 互信息是两个变量之间的依赖性的度量,即从x观察Y获得的信息量。MI来自熵的定义。在离散模式下,得到两个变量X和Y的互信息如下:

这可以看作是联合分布Pr[X = X, Y = Y]和乘积分布Pr[X = X]之间的Kullback-Leibler散度度量。Pr[Y = Y]。因此,互信息可以类似地表示为在X上的期望值上条件概率Pr[Y = yj X = X]与边际概率Pr[Y = Y]之间的差异:

互信息总是大于等于零。事实上,如果X和Y无关,它就变成了零。

对于变量X和Y都是连续的情况,对应关系可以用积分来表示[31-33]。使用R软件(R Foundation for Statistical Computing, Vienna, Austria)对本研究中考虑的12个心电导联数据计算并存储在MIN×N矩阵中(其中N = 12)。

4、方法

本研究旨在使用心肌梗死接近矩阵的GCN来诊断和分类心律类型。为此,使用了查普曼大学新开放的研究数据库,该数据库拥有1万多人的心电图信号。

本文提出的方法进行心电分析和心律类型分类的步骤为:(1)数据收集;(2)数据预处理;(3)模型建立、培训和调整;最后,验证和分类。

本文使用的数据最初是由Zheng等人[5]收集并介绍的。如2.1节所述,在数据收集阶段,首先,每个受试者暴露于12导联静息心电图10 s。采集的数据存储在GE MUSE心电系统中。然后,一位有执照的医生给这些节律贴上标签。另一位执业医师进行了二次验证。如果有争议,资深医生会介入并做出最终决定。然后将来自GE MUSE系统的心电数据和诊断信息转换成XML片段,并用通用电气(GE)定义的特定命名法进行编码。最后,利用转换工具从XML文件中提取心电数据和诊断信息,并将其转换为CSV格式[5]。

在第二阶段(预处理),进行降噪操作。据[5]报道,本研究中使用的心电数据中的噪声污染来源包括电源线干扰、运动伪影、电极接触噪声、基线徘徊、肌肉收缩和随机噪声。为了对心电数据进行统计分析,必须去除数据中的噪声。

Zhang等人[5]提出并实现了一种从原始心电数据中去除噪声的顺序去噪方法。由于心电频率的正常范围为0.5 ~ 50 Hz,因此采用巴特沃斯低通滤波器去除50 Hz以上的信号。为了消除基线漂移的影响,使用了黄土平滑器。最后,使用非局部均值技术处理剩余的噪声(参见§1)。数据去噪方法”和图3-5,本研究分析的数据集的数据预处理步骤详细见[5])。

第三步,这将是本研究的主要贡献之一,是通过计算MI矩阵,建立和训练GCN网络,为每个ECG构建或学习一个图,如图4所示。下面将讨论这一步骤的细节。

为了构建图,首先向每个专家展示一个图来显示心导联,12个节点代表12个心导联。考虑到每根导线包含5000个心脏电位样本,特征矩阵测量为12 × 5000。使用MI矩阵计算引线之间的关系,并将其用作GCN中的邻接矩阵(12 × 12)(图4)。

 数据集中有11种节奏,但其中4种节奏的样本数量不足2%,AT (n = 121;1.14%), AVNRT (n = 16;0.15%), AVRT (n = 8;0.07%), SAA (n = 7;0.07%)。因此,关于其他7种节奏的信息被用于训练和测试(10,494人)。这7种节律包括AF、AFIB、SI、SB、SR、ST和SVT。在第一阶段,选择合适的GCN-MI,对该模型进行5层、10层和15层的训练。为此,采用k = 2、3、4、5倍交叉验证法和留一交叉验证法。这些CV方法被用来选择5层、10层和15层GCN-MI网络的训练组和测试组。这些网络的性能使用标准评价标准进行评估,如测试集中的准确性、特异性、精密度和灵敏度。为了选择最合适的精度网络,采用t独立检验对三个网络进行配对比较。然后选择一个网络,并根据该网络对所有数据进行分类。为了评价这种分类,我们编制了一个混淆矩阵,并估计了评价标准。

最后,为了展示本文在提高GCN-MI网络在心律失常诊断和不同类型心律分类方面的新颖性,将结果与不考虑心导联之间结构的结果进行了比较。在非结构化状态下,将单位矩阵视为邻接矩阵。本研究的结果还与该数据集中使用不同方法诊断心律失常的其他研究进行了比较。

考虑真阳性(TP)、真阴性(TN)、假阳性(FP)和假阴性(FN),将本文提出的基于cgn的分类方法的准确性、灵敏度、特异性和精密度作为性能标准定义如下:

三、实验结果

MI矩阵使用R软件计算,以测量所有个体的12个心导联的关系,并使用Python软件作为GCN中的邻近矩阵引入。形成GCN-MI-10和GCN-MI-15,寻找GCN-MI-5(卷积层)的最优网络,并在k = 2,3,4,5的留一交叉验证下评估其性能。采用交叉验证的方法,在一个测试集中对这些网络的准确性、特异性、灵敏度和精密度指标进行评估(表2)。从图5可以看出,GCN-MI-15的评价指标图始终高于其他两种网络。然而,使用t独立检验来评估这种差异的显著性。结果如表2和图5所示,GCN-MI-15网络在留一和k = 2、3、4、5交叉验证方法下的准确率显著高于GCN-MI-5和GCN-MI-10网络的准确率。

采用统计学检验选择合适的折叠数进行交叉验证。95%置信度的t独立检验结果表明,fold = 3和4的准确性高于其他选择

然而,很明显,添加更多的层将帮助我们提取更多的特征,但我们应该意识到通过添加更多的层和计算层可能出现的过拟合。基于上述不同层数的GCN-MI的准确率与其他预测性能值的基准研究,且计算成本增加可以忽略不计,因此选择了具有15中间层数的GCN-MI,并采用交叉验证方法配置了4层数的GCN-MI。在所选择的空间GCN模型中,对于每一个卷积层,如2.2.2节所述,卷积运算是基于图附近的矩阵多项式进行的。卷积的每一层的输出给下一层。所选15个卷积层的GCN网络参数及MI邻接矩阵如表3所示。

 该网络中间层的功能为ReLU,最底层的功能为Softmax。学习曲线表明,训练精度较高,模型拟合良好。从图6可以看出,经过600次迭代后,交叉验证的准确率收敛到训练准确率(图6)。

 在下一步,使用调谐网络,所有个体的节奏类型被识别和分类。结果表明,根据所选神经网络分类的人100%被正确识别。结果表明,采用交叉验证方法的GCNMI-15网络在测试集中的准确率高于其他网络。因此,最终所有数据都通过GCN-MI网络进行分类。结果显示,分别为SR、AFIB、ST、AF、SI和SVT的患者的正确诊断率分别为99.6%、98.1%、99.5%、95.5%、92.5%和100%,其余患者则被诊断为另一种心律失常。混淆矩阵显示了这种分类是如何工作的。使用单位矩阵的网络给出了较差的结果(图7)。

在SB检测中,该网络的灵敏度、精密度、特异度和准确度分别为99.35%、100%、100%和99.76%,SR检测值分别为98.79%、99.61%、99.92%和99.72%。其他类的分类性能标准结果如表4所示。结果表明,采用该结构(MI)构建的GCN网络的灵敏度、精密度、特异性和准确度均显著高于采用同一结构构建的GCN网络。结果还显示,GCN-MI诊断心律失常类型的敏感性、精密度、特异性和准确性的总体值分别为98.45%、97.89%、99.85%和99.71%。该网络对ST节律分类灵敏度最高(99.73%),对SVT分类准确率最高(99.95%)。此外,SB和SVT节律的分类精度和特异性最高(100%)。相比之下,GCN-Id的敏感性、精密度、特异性和准确度的总体值分别为68.24%、72.83%、95.24%和92.68。GCN-Id网络对SB节律分类的灵敏度(90.21%)和精度(84.36%)最高,对SVT分类的准确率(94.56)最高。此外,最高特异性与SI节律的分类有关(98.05%)(表4)。

采用独立t检验比较均值和标准差为0.9971±0.3210的两种GCN-MI模型和均值和标准差为0.9268±0.4774的GCN-Id模型的准确性。本试验结果表明,GCN-MI模型对上述七种心律失常的检测和分类准确率显著(p值< 0.001)高于GCN-Id方法

本研究结果与其他研究结果的比较表明,本文方法在心律失常诊断中的准确率(99.71%)高于DNN(92.24%)、CNN Trees(97.60%)、Meta CNN Trees(98.29%)、Single Classifier(92.89%)、1-D CNN(94.01%)、RNN(96.21%)、XGBoost(89.40%)、Teacher Model(98.96%)、Student Model(98.13%)和GCN-MI(99.71%)模型(图8)。

 四、讨论

本研究旨在区分和分类不同类型的心律。迄今为止,无论是作为图的心电图还是GCNs都没有被直接用于检测和分类心律失常,本研究首次考虑了心导联与MI矩阵的关系,并将其提供给邻接矩阵下的网络。采用查普曼大学新的大型心电数据库。我们的研究推荐了一个15层的GCN-MI来检测和分类七种基于12导联心电图的节律,涉及10,000多人。将提出的网络评价指标(GCN-MI)与GCN- id进行比较,发现考虑MI指标来衡量心导联之间的关系可以提高GCN的性能。提出模型的准确率为99.71%,而有个人结构信息的GCN网络的准确率为92.68%。许多有研究者正使用不同的资源,不同的网络架构创建心律失常检测系统。

五、结论

提高心律失常诊断工具的准确性对预防病情恶化和可能的死亡至关重要。近年来,深度学习算法(具有多种网络结构)已广泛应用于各种心律失常类型的自动检测。为了达到较高的准确率,构建包含心电导联关系的网络结构起着至关重要的作用。本研究通过构建一种基于MI相邻矩阵的高效GCN模型,提供了一种考虑心电数据间结构的新方法。结果表明,构建的GCN-MI对不同类型心律失常的诊断和分类非常有效,且准确率明显高于现有方法。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值