深度学习pytorch实战-运动鞋识别P5周

向大佬学习大地之灯第P5周:Pytorch实现运动鞋识别icon-default.png?t=N7T8http://t.csdnimg.cn/eVVAG

>- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/0dvHCaOoFnW8SCp3JpzKxg) 中的学习记录博客**
>- **🍖 原作者:[K同学啊](https://mtyjkh.blog.csdn.net/)**

引言

一篇高质量文章引发的思考,文章链接如下高效学习,学习的目的,感触颇深,有几点感悟。

1.注重内核提升而不是形式主义,知识点千千万,永远学不完,普通人与人才之间的差别就是解决问题的能力,学习的首要任务其实就是提升问题解决能力。在这个检索信息如此便利的时代。

2.遇到无法检索的问题,该怎么办,培养自己的思考能力,培养自己的主观能动性,遇到问题主动解决,正如我们这个训练营计划,珍惜每次学习机会,积极探索,充分吸收。

3.如图

所以,不在弄那么多形式主义了,以构造模型,训练模型为第一准则。

环境

环境

学习要求

一、前期准备

1、设置GPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets

import os,PIL,pathlib

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

device

2、导入数据

import os,PIL,random,pathlib

data_dir = './5-data/'
data_dir = pathlib.Path(data_dir)

data_paths  = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[1] for path in data_paths]
classeNames

二、构建简单的CNN网络

import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.conv1=nn.Sequential(
            nn.Conv2d(3, 12, kernel_size=5, padding=0), # 12*220*220
            nn.BatchNorm2d(12),
            nn.ReLU())
        
        self.conv2=nn.Sequential(
            nn.Conv2d(12, 12, kernel_size=5, padding=0), # 12*216*216
            nn.BatchNorm2d(12),
            nn.ReLU())
        
        self.pool3=nn.Sequential(
            nn.MaxPool2d(2))                              # 12*108*108
        
        self.conv4=nn.Sequential(
            nn.Conv2d(12, 24, kernel_size=5, padding=0), # 24*104*104
            nn.BatchNorm2d(24),
            nn.ReLU())
        
        self.conv5=nn.Sequential(
            nn.Conv2d(24, 24, kernel_size=5, padding=0), # 24*100*100
            nn.BatchNorm2d(24),
            nn.ReLU())
        
        self.pool6=nn.Sequential(
            nn.MaxPool2d(2))                              # 24*50*50

        self.dropout = nn.Sequential(
            nn.Dropout(0.2))
        
        self.fc=nn.Sequential(
            nn.Linear(24*50*50, len(classeNames)))
        
    def forward(self, x):
        
        batch_size = x.size(0)
        x = self.conv1(x)  # 卷积-BN-激活
        x = self.conv2(x)  # 卷积-BN-激活
        x = self.pool3(x)  # 池化
        x = self.conv4(x)  # 卷积-BN-激活
        x = self.conv5(x)  # 卷积-BN-激活
        x = self.pool6(x)  # 池化
        x = self.dropout(x)
        x = x.view(batch_size, -1)  # flatten 变成全连接网络需要的输入 (batch, 24*50*50) ==> (batch, -1), -1 此处自动算出的是24*50*50
        x = self.fc(x)
       
        return x

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))

model = Model().to(device)
model
  • x.view()只是一个张量形状变换的操作,它本身不包含任何参数(如权重和偏置),也不进行任何学习或推断。
  • FC层是一个包含参数的层,它通过学习权重和偏置来对输入特征进行分类。FC层可以看作是一个线性变换,它将输入特征映射到输出类别的得分上

三、训练模型

编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

编写测试函数,

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

设置动态学习率

def adjust_learning_rate(optimizer, epoch, start_lr):
    # 每 2 个epoch衰减到原来的 0.98
    lr = start_lr * (0.92 ** (epoch // 2))
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

learn_rate = 1e-4 # 初始学习率
optimizer  = torch.optim.SGD(model.parameters(), lr=learn_rate)
#✨调用官方动态学习率接口

#与上面方法是等价的


# # 调用官方动态学习率接口时使用
# lambda1 = lambda epoch: (0.92 ** (epoch // 2)
# optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)
# scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) #选定调整方法

正式训练

第二次训练,参数不变,epochs40 学习率1e-4 # 初始学习率

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
epochs     = 40

train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    # 更新学习率(使用自定义学习率时使用)
    adjust_learning_rate(optimizer, epoch, learn_rate)
    
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    # scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    # 获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, 
                          epoch_test_acc*100, epoch_test_loss, lr))
print('Done')

 

 

 

 

 说明了,当其他条件不变时,epochs到达一定次数测试集准确率就会固定

 

 

 

 终于达到了基础标准84%

四、 结果可视化

1. Loss与Accuracy图

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

 

2. 指定图片进行预测

torch.squeeze()详解

对数据的维度进行压缩,去掉维数为1的的维度

函数原型:

torch.squeeze(input, dim=None, *, out=None)

关键参数说明:

  • input (Tensor):输入Tensor
  • dim (int, optional):如果给定,输入将只在这个维度上被压缩
from PIL import Image 

classes = list(train_dataset.class_to_idx)

def predict_one_image(image_path, model, transform, classes):
    
    test_img = Image.open(image_path).convert('RGB')
    # plt.imshow(test_img)  # 展示预测的图片

    test_img = transform(test_img)
    img = test_img.to(device).unsqueeze(0)
    
    model.eval()
    output = model(img)

    _,pred = torch.max(output,1)
    pred_class = classes[pred]
    print(f'预测结果是:{pred_class}')
# 预测训练集中的某张照片
predict_one_image(image_path='./5-data/test/adidas/1.jpg', 
                  model=model, 
                  transform=train_transforms, 
                  classes=classes)

五、保存并加载模型 

# 模型保存
PATH = './model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)

# 将参数加载到model当中
model.load_state_dict(torch.load(PATH, map_location=device))

六、动态学习率(学习率调度器(scheduler))

Pytorch中动态调整学习率icon-default.png?t=N7T8http://t.csdnimg.cn/iar0X

1.    torch.optim.lr_scheduler.StepLR

等间隔动态调整方法,每经过step_size个epoch,做一次学习率decay,以gamma值为缩小倍数。

函数原型:

torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)

关键参数详解

  • optimizer(Optimizer):是之前定义好的需要优化的优化器的实例名
  • step_size(int):是学习率衰减的周期,每经过每个epoch,做一次学习率decay
  • gamma(float):学习率衰减的乘法因子。Default:0.1

用法示例:

optimizer = torch.optim.SGD(net.parameters(), lr=0.001 )
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)

 2. lr_scheduler.LambdaLR

根据自己定义的函数更新学习率。

函数原型

torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1, verbose=False)

关键参数详解

  • optimizer(Optimizer):是之前定义好的需要优化的优化器的实例名
  • lr_lambda(function):更新学习率的函数

用法示例:

lambda1 = lambda epoch: (0.92 ** (epoch // 2) # 第二组参数的调整方法
optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) #选定调整方法

3. lr_scheduler.MultiStepLR 

在特定的 epoch 中调整学习率

函数原型

torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=0.1, last_epoch=-1, verbose=False)

关键参数详解

  • optimizer(Optimizer):是之前定义好的需要优化的优化器的实例名
  • milestones(list):是一个关于epoch数值的list,表示在达到哪个epoch范围内开始变化,必须是升序排列
  • gamma(float):学习率衰减的乘法因子。Default:0.1

用法示例

optimizer = torch.optim.SGD(net.parameters(), lr=0.001 )
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, 
                                                 milestones=[2,6,15], #调整学习率的epoch数
                                                 gamma=0.1)

 调用官方接口实例

model = [Parameter(torch.randn(2, 2, requires_grad=True))]
optimizer = SGD(model, 0.1)
scheduler = ExponentialLR(optimizer, gamma=0.9)

for epoch in range(20):
    for input, target in dataset:
        optimizer.zero_grad()
        output = model(input)
        loss = loss_fn(output, target)
        loss.backward()
        optimizer.step()
    scheduler.step()

总结

初次训练时,其他参数不变,只改变轮次,轮次达到一定数量时候,testacc已经基本确定了,82左右。

所以我重新设置了学习率为1,发现准确率最高只有50左右。随后又改编为初始学习率0.0001,重新开始训练,我才可能是第一次陷入局部最优了?经过调整释放了出来,对了,我更换了学习率衰减策略,引入gamma

效果能到达84的
optimizer = torch.optim.SGD(model.parameters(), lr=0.001 )
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)

效果82左右的
# def adjust_learning_rate(optimizer, epoch, start_lr):
#     # 每 2 个epoch衰减到原来的 0.98
#     lr = start_lr * (0.98 ** (epoch // 2))
#     for param_group in optimizer.param_groups:
#         param_group['lr'] = lr

# learn_rate = 1e-4# 初始学习率
# optimizer  = torch.optim.SGD(model.parameters(), lr=learn_rate)

展望

问题一,相同网络结构,不同数据集,测试结果会怎样?

问题二,网络结构是如何设计的。

通过观察:

P1:手写数字识别网络结构设计为输入,卷积层,池化层,卷积层,池化层,Flatten层,全连接层,输出层。

P2:....................下次在解决

  • 10
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 《PyTorch生物医学视觉深度学习入门与实战--豪华版》是一本针对生物医学领域的深度学习入门教材。它涵盖了PyTorch框架下的生物医学图像处理、分割、分类、检测等任务,并提供了相关实战案例。 这本书首先介绍了生物医学视觉深度学习的基础知识,包括卷积神经网络、深度学习模型的优化和训练等。接着,书中详细解释了PyTorch框架的基本用法和相关工具,帮助读者在实践中理解和应用深度学习算法。 在实战部分,本书结合生物医学图像处理的具体问题,介绍了数据预处理、模型构建和训练、结果评估等关键步骤。读者可以通过实例学习使用PyTorch框架处理生物医学图像,如医学图像的分割、肿瘤检测和分类等任务,并了解如何应对不同情况下的挑战。 此外,书中还介绍了一些扩展内容,如生成对抗网络(GAN)在生物医学领域的应用、迁移学习等,以帮助读者深入理解和拓展知识。 综上所述,《PyTorch生物医学视觉深度学习入门与实战--豪华版》是一本全面介绍生物医学图像处理深度学习的教材,适合对生物医学领域感兴趣的学习者,通过学习本书的内容可以提高在生物医学图像处理方面的能力和应用水平。 ### 回答2: 《PyTorch生物医学视觉深度学习入门与实战--豪华版》是一本针对深度学习在生物医学视觉领域应用的学习和实践指南。 深度学习在生物医学视觉中具有重要的应用价值,例如通过图像识别和分割等技术来辅助医生进行疾病诊断和治疗。而PyTorch作为一种强大的深度学习框架,为进行生物医学视觉深度学习提供了方便和高效的工具。 《PyTorch生物医学视觉深度学习入门与实战--豪华版》从初级到高级提供了全面而系统的学习内容。书中首先介绍了深度学习的基础知识和常用算法,以及PyTorch的基本使用方法。然后,详细探讨了如何在生物医学视觉领域中应用深度学习,包括图像分割、图像分类、目标检测等任务的具体方法和实践。 此外,《PyTorch生物医学视觉深度学习入门与实战--豪华版》还提供了大量的实际案例和代码示例,读者可以通过实践来巩固所学知识。书中也讨论了一些生物医学数据集的特点和处理方法,以及常用性能评估指标的使用。 总的来说,《PyTorch生物医学视觉深度学习入门与实战--豪华版》旨在帮助读者快速入门和应用深度学习技术解决生物医学视觉问题。无论是初学者还是有一定基础的研究人员都可以从中获得深入的学习和实践经验,从而在生物医学领域取得更好的成果。 ### 回答3: 《PyTorch生物医学视觉深度学习入门与实战--豪华版》是一本关于使用PyTorch进行生物医学图像处理和深度学习的书籍。本书旨在帮助读者从零开始了解如何使用PyTorch来处理生物医学图像,并深入学习深度学习算法在生物医学图像分析中的应用。 该书首先介绍了PyTorch这一热门的深度学习框架的基本概念和使用方法,包括Tensor、模型构建、前向传播、反向传播等。然后,书中讲解了生物医学图像处理的基础知识,如图像预处理、增强和分割等技术。 在掌握了基础知识之后,读者将逐步学习应用深度学习算法处理生物医学图像的方法。书中以一系列实战项目为例,涵盖了多个生物医学图像处理任务,如肺部结节检测、乳腺癌识别、皮肤病分类等。每个项目都介绍了该任务的背景和重要性,然后详细讲解了使用PyTorch实现的具体步骤。 此外,该书还特别强调了实践的重要性。每个实战项目都包括了详细的代码示例和完整的代码实现,读者可以根据书中的指导逐步实现项目,并通过实践加深对深度学习和生物医学图像处理的理解。 总之,《PyTorch生物医学视觉深度学习入门与实战--豪华版》是一本全面介绍如何使用PyTorch进行生物医学图像处理和深度学习的书籍。它可以帮助读者从零开始学习并掌握相关知识和技能,并通过实际项目的实战经验,进一步提升自己在生物医学视觉深度学习领域的能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值