强化学习
文章平均质量分 91
OpenDILab开源决策智能平台
聚集科技前沿研究问题,致力于探索下一代人工智能
展开
-
给你一个 PPO × Family 课程,撑起整个决策 AI 宇宙
决策智能入门级公开课 PPO × Family 由中国计算机学会主办,上海人工智能实验室承办,全球高校人工智能学术联盟、北京大学人工智能研究院多智能体中心、浙江大学上海高等研究院、商汤科技协办,知乎、机器之心、智海平台、 Paperweekly 支持。顺利结课的学员还可获得由中国计算机学会颁发的课程学习认证证书。原创 2022-12-01 11:50:50 · 854 阅读 · 1 评论 -
万事开头难? 喵小DI玩“羊了个羊”可不难
DI-sheep 版 羊了个羊原创 2022-09-26 14:54:06 · 1549 阅读 · 0 评论 -
Transformer + RL:是强化学习魔高一尺,还是 Transformer 道高一丈? (1)
进一步地,这种网络结构可以与许多策略相结合,比如V-MPO(Actor-Critic),R2D2(Value-Based),充分让 Transformer 更适应强化学习的优化过程,并利用 Transformer 在宽度和深度易于拓展的优点,在更大的数据集,更大型的,复杂的环境中发挥作用。在那些需要长期记忆的环境中,使用 Transformer 网络的 RL 智能体可以大幅优于常规的 RNN 模型,利用状态和动作在其轨迹中的时序依赖性,捕捉各种长期时序依赖,学习一个更好的表征来去预测下一步的决策行为。...原创 2022-08-30 21:42:40 · 3417 阅读 · 0 评论 -
awesome-exploration-rl 前沿追踪——如何高效地探索未知的奥秘
我们将继续在仓库中推进强化学习中的探索相关问题的研究进展,包括一些算法文章解读,并结合DI-engine推出一系列探索与利用平衡相关的基准测试和代码,助力各位对 RL 有兴趣的人成为真正的强化学习探索家。同时也欢迎志同道合的小伙伴 Pull Request 相关工作,共同营造健康、可持续的学术生态。参考资料[1]Go-Explore[2]NoisyNet[3][4][5]EX2[6]ICM[7]RND[8]NGU[9]Agent57[10]VIME[11]EMI[12]DIYAN[13]SAC。原创 2022-08-24 21:12:40 · 387 阅读 · 0 评论 -
代码设计师|配置文件的起源与矛盾
许多技术开发者在进行代码设计时,总会遇到各种各样的问题,OpenDILab针对这些问题开设了“代码设计师”系列专栏。原创 2022-08-01 12:42:10 · 125 阅读 · 0 评论 -
NeurIPS论文解读|Decision Transformer: 通过序列建模解决离线强化学习问题
今天为大家推荐一篇2021年被NeurIPS收录的一篇论文。《Decision Transformer: reinforcement learning via sequence modeling》推荐读者将本博客结合原论文食用。如有谬误偏颇烦请指出!原创 2022-07-21 19:13:06 · 2414 阅读 · 2 评论 -
强化学习图鉴|人工智能新兴子领域,分布式强化学习是AI技术未来大规模实用化的关键?
分布式强化学习(Distributed RL)是深度强化学习走向大规模应用,解决复杂决策空间和长期规划问题的必经之路。原创 2022-07-06 14:49:58 · 700 阅读 · 0 评论