离散傅里叶逆变换快速算法

由于离散傅里叶变换对
DFT:
X ( k ) = D F T [ x ( n ) ] = ∑ n = 0 N − 1 x ( n ) W N n k X\left( k \right) =DFT\left[ x\left( n \right) \right] =\sum_{n=0}^{N-1}{x\left( n \right) W_{N}^{nk}} X(k)=DFT[x(n)]=n=0N1x(n)WNnk
IDFT:
x ( n ) = I D F T [ X ( k ) ] = 1 N ∑ k = 0 N − 1 X ( k ) W N − n k x\left( n \right) =IDFT\left[ X\left( k \right) \right] =\frac{1}{N}\sum_{k=0}^{N-1}{X\left( k \right) W_{N}^{-nk}} x(n)=IDFT[X(k)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值