离散傅里叶变换公式推导

离散傅里叶变换公式推导

先抛变换公式:
F m = ∑ n = 0 N − 1 f n e − 2 π i m n / N ↔ f n = 1 N ∑ m = 0 N − 1 F m e 2 π i m n / N F_m=\sum_{n=0}^{N-1}f_ne^{-2\pi imn/N}\leftrightarrow f_n=\frac{1}{N}\sum_{m=0}^{N-1}F_me^{2\pi imn/N} Fm=n=0N1fne2πimn/Nfn=N1m=0N1Fme2πimn/N
式中的N是数据点个数
讲道理一开始完全看不懂公式这么来的,一顿百度后我学到了很多,但就是没学到怎么推公式。好吧只能自己推。
先来看一下DFT的物理意义:DFT示意图
(图我网上随便下的)
离散傅里叶变换是把周期性离散信号变换到频域上,大家知道,周期信号变到频域上是离散的。离散就是在个别点 { x n } \{x_n\} {xn}有值。我是学物理的,物理里面离散的可以这么表示:
f ( x ) = ∑ n = 0 N − 1 f n δ ( x − x n ) f(x)=\sum_{n=0}^{N-1}f_n\delta(x-x_n) f(x)=n=0N1fnδ(xxn)
δ ( x ) \delta(x) δ(x)是个在 x = 0 x=0 x=0处无穷大,其余位置为0且全空间积分为1的函数 ∫ − ∞ ∞ δ ( x ) d x = 1 \int_{-\infty}^{\infty}\delta(x)dx=1 δ(x)dx=1

周期性信号变到频域上,那不就是傅里叶级数吗。自然有公式
F m = ∫ − T T ∑ n = 0 N − 1 f n δ ( x − x n ) e − i x k m d x = ∑ n = 0 N − 1 ∫ f n δ ( x − x n ) e − i x k m d x = ∑ n = 0 N − 1 f n e − i x n k m \begin{aligned} F_m &= \int_{-T}^{T}\sum_{n=0}^{N-1}f_n\delta(x-x_n)e^{-ixk_m}dx \\&=\sum_{n=0}^{N-1}\int f_n\delta(x-x_n)e^{-ixk_m}dx \\&=\sum_{n=0}^{N-1}f_ne^{-ix_nk_m} \end{aligned} Fm=TTn=0N1fnδ(xxn)eixkmdx=n=0N1fnδ(xxn)eixkmdx=n=0N1fneixnkm
接下来我们假设 d x , d k dx,dk dx,dk分别是 { x n } \{x_n\} {xn}, { k n } \{k_n\} {kn}的间距,那么:
x n = n d x , k m = m d k x_n=ndx,\qquad k_m = mdk xn=ndx,km=mdk
代入上式:
F m = ∑ n = 0 N − 1 f n e − i x n k m = ∑ n = 0 N − 1 f n e − i m n d x d k \begin{aligned} F_m &=\sum_{n=0}^{N-1}f_ne^{-ix_nk_m} \\&=\sum_{n=0}^{N-1}f_ne^{-imndxdk} \end{aligned} Fm=n=0N1fneixnkm=n=0N1fneimndxdk
是不是和最上面的式子很接近了?还差最后一步,确定 d x d k dxdk dxdk的值。
下面我懒得写了,只说一下做法吧

  1. 先写出 F m F_m Fm f n f_n fn的逆变换,
    f n = c ∑ n = 0 N − 1 F m e i m n d x d k f_n = c\sum_{n=0}^{N-1}F_me^{imndxdk} fn=cn=0N1Fmeimndxdk
    c c c是个系数,之后应该能计算出是 1 / N 1/N 1/N
  2. 把上面的 F m F_m Fm表达式带进去,就能得到用 f n ′ f_{n'} fn求和表达的 f n f_n fn,这要求 d x d k dxdk dxdk满足一定关系,其实就是满足 d x d k = 2 π N dxdk = \frac{2\pi}{N} dxdk=N2π
  3. 最后把公式里的 d x d k dxdk dxdk替换就完事了

这个公式推导倒是不难,主要问题是理解不要出现偏差。所谓离散傅里叶变换是把周期离散信号变换到周期离散频谱,这是真的离散信号。一开始我以为是连续信号在某些给定点采样得到的值呢(没有学过信号相关的内容,在计算物理中遇到了这个离散傅里叶变换)。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值