一维离散傅里叶变换(DFT)和逆变换(IDFT)公式的一种推导

单独视角:DFT公式的推导

  由博文一维连续傅里叶变换和逆变换公式的一种推导,设 f ( t ) f\left( t \right) f(t)是一个连续的时间信号,其一维连续Fourier变换可取为
F ( u ) = ∫ − ∞ ∞ f ( t ) e − j 2 π u t d t F\left( u \right)=\int_{-\infty }^{\infty }{f\left( t \right){ {e}^{-j2\pi ut}}dt} F(u)=f(t)ej2πutdt

步骤一
  从某一时刻(记为 0 0 0时刻)开始,每经过时间间隔 Δ T \Delta T ΔT就对连续函数 f ( t ) f\left( t \right) f(t)采样一次,共采样 N N N次。对连续函数 f ( t ) f\left( t \right) f(t)等间隔采样就得到一个离散序列
f ( Δ T ) , f ( 2 Δ T ) , ⋯   , f ( N Δ T ) f\left( \Delta T \right),f\left( 2\Delta T \right),\cdots ,f\left( N\Delta T \right) f(ΔT),f(2ΔT),,f(NΔT)
记为
f ⌢ ( 0 ) ,   f ⌢ ( 1 ) ,   ⋯   ,   f ⌢ ( N − 1 ) \overset\frown{f}\left( 0 \right),\text{ }\overset\frown{f}\left( 1 \right),\text{ }\cdots ,\text{ }\overset\frown{f}\left( N-1 \right) f(0), f(1), , f(N1)
而对于其他没采样到的点,即 ∀ t ∉ { Δ T ,   2 Δ T , ⋯ N Δ T } \forall t\notin \left\{ \Delta T,\text{ }2\Delta T,\cdots N\Delta T \right\} t/{ ΔT, 2ΔT,NΔT},视该点处采样的函数值
f ( t ) = 0 f\left( t \right)=0 f(t)=0

步骤二
  将一维连续Fourier变换公式进行拆解
F ( u ) = ∫ − ∞ ∞ f ( t ) e − j 2 π u t d t = ∫ − ∞ 0 + ∫ 0 N Δ T + ∫ N Δ T ∞ f ( t ) e − j 2 π u t d t = ∫ − ∞ 0 + ∫ N Δ T ∞ f ( t ) e − j 2 π u t d t + ∫ 0 N Δ T f ( t ) e − j 2 π u t d t = 0 + ∫ 0 N Δ T f ( t ) e − j 2 π u t d t = ∫ 0 N Δ T f ( t ) e − j 2 π u t d t = F 1 ( u ) \begin{aligned} & F\left( u \right)=\int_{-\infty }^{\infty }{f\left( t \right){ {e}^{-j2\pi ut}}dt} \\ & =\int_{-\infty }^{0}{+\int_{0}^{N\Delta T}{+\int_{N\Delta T}^{\infty }{f\left( t \right){ {e}^{-j2\pi ut}}dt}}} \\ & =\int_{-\infty }^{0}{+\int_{N\Delta T}^{\infty }{f\left( t \right){ {e}^{-j2\pi ut}}dt}}+\int_{0}^{N\Delta T}{f\left( t \right){ {e}^{-j2\pi ut}}dt} \\ & =0+\int_{0}^{N\Delta T}{f\left( t \right){ {e}^{-j2\pi ut}}dt} \\ & =\int_{0}^{N\Delta T}{f\left( t \right){ {e}^{-j2\pi ut}}dt} \\ & ={ {F}_{1}}\left( u \right) \\ \end{aligned} F(u)=f(t)ej2πutdt=0+0NΔT+NΔTf(t)ej2πutdt=0+NΔTf(t)ej2πutdt+0NΔTf(t)ej2πutdt=0+0NΔTf(t)ej2πutdt=0NΔTf(t)ej2πutdt=F1(u)

步骤三
  将 F 1 ( u ) { {F}_{1}}\left( u \right) F1(u)转换为黎曼和形式 F 2 ( u ) { {F}_{2}}\left( u \right) F2(u),具体地说,把区间 [ 0 , N Δ T ] \left[ 0,N\Delta T \right] [0,NΔT]等间隔分成 N N N份,第 i i i个区间 k i = [ ( i − 1 ) Δ T , i Δ T ] { {k}_{i}}=\left[ \left( i-1 \right)\Delta T,i\Delta T \right] ki=[(i1)ΔT,iΔT] i = 1 , 2 , ⋯   , N i=1,2,\cdots ,N i=1,2,,N,每个区间长度为 Δ T \Delta T ΔT。在每个区间 k i { {k}_{i}} ki上取右端点的函数值 f ( i Δ T ) e − j 2 π u ⋅ ( i Δ T ) f\left( i\Delta T \right){ {e}^{-j2\pi u\centerdot \left( i\Delta T \right)}} f(iΔT)ej2πu(iΔT)
F 2 ( u ) = ∑ i = 1 N [ f ( i Δ T ) e − j 2 π u ⋅ ( i Δ T ) ] ⋅ Δ T = ∑ n = 0 N − 1 [ f ( ( n + 1 ) Δ T ) e − j 2 π u ⋅ ( n + 1 ) Δ T ] ⋅ Δ T = ∑ n = 0 N − 1 [ f ⌢ ( n ) e − j 2 π u ⋅ ( n + 1 ) Δ T ] ⋅ Δ T \begin{aligned} & { {F}_{2}}\left( u \right)=\sum\limits_{i=1}^{N}{\left[ f\left( i\Delta T \right){ {e}^{-j2\pi u\centerdot \left( i\Delta T \right)}} \right]\centerdot \Delta T} \\ & =\sum\limits_{n=0}^{N-1}{\left[ f\left( \left( n+1 \right)\Delta T \right){ {e}^{-j2\pi u\centerdot \left( n+1 \right)\Delta T}} \right]\centerdot \Delta T} \\ & =\sum\limits_{n=0}^{N-1}{\left[ \overset\frown{f}\left( n \right){ {e}^{-j2\pi u\centerdot \left( n+1 \right)\Delta T}} \right]\centerdot \Delta T} \\ \end{aligned} F2(u)=i=1N[f(iΔT)ej2πu(iΔT)]ΔT=n=0N1[f((n+1)ΔT)ej2πu(n+1)ΔT]ΔT=n=0N1[

  • 3
    点赞
  • 50
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值