一、心算列举出 Z 10 Z_{10} Z10的所有生成元
Z
10
Z_{10}
Z10的阶为
ϕ
(
10
)
\phi(10)
ϕ(10)=| {1,3,7,9 } |=4
所以
Z
10
Z_{10}
Z10有
ϕ
(
4
)
\phi(4)
ϕ(4)=2个生成元
由心算可得
Z
10
Z_{10}
Z10的生成元为3,7
二、群 Z 17 ∗ Z_{17}^{*} Z17∗有多少个生成元,已知3是其中一个生成元,请问9和10是否为生成元?
因为17是素数,故
Z
17
∗
Z_{17}^{*}
Z17∗的生成元个数为
ϕ
\phi
ϕ(17-1)=8
Z
17
∗
Z_{17}^{*}
Z17∗的阶为
ϕ
\phi
ϕ(17)=16
· 9是否为生成元?
9 ≡ 3 2 m o d ( 17 ) \quad9\equiv3^2mod(17) 9≡32mod(17),故 k = 2 , d = g c d ( k , n ) = g c d ( 2 , 16 ) = 2 k=2,d=gcd(k,n)=gcd(2,16)=2 k=2,d=gcd(k,n)=gcd(2,16)=2
h = n / d = 16 / 2 = 8 \quad h=n/d=16/2=8 h=n/d=16/2=8
\quad 故9不是生成元
· 10是否为生成元?
10 ≡ 3 3 m o d ( 17 ) \quad 10\equiv3^3mod(17) 10≡33mod(17),故 k = 3 , d = g c d ( k , n ) = g c d ( 3 , 16 ) = 1 k=3,d=gcd(k,n)=gcd(3,16)=1 k=3,d=gcd(k,n)=gcd(3,16)=1
h = n / d = 16 / 1 = 16 \quad h=n/d=16/1=16 h=n/d=16/1=16
\quad 故10是生成元
三、证明:如果群G没有非平凡子群,则群G是循环群
证明:
如果群G没有非平凡子群,则群G只包含平凡子群,则G中除单位元以外的其他元素都能生成G,因此G是循环群。
四、证明:有限循环群G中任意元素的阶都能整除群G的阶
由命题7.5可得,如果群G=< g >是阶为n的循环群,如果h=
g
k
g^k
gk,则h的阶为
n
/
g
c
d
(
k
,
n
)
n/gcd(k,n)
n/gcd(k,n)
证有限循环群G中任意元素的阶都整除群G的阶。