1. IMS Bearing Dataset(NASA PCoE 存储)
- 数据链接: NASA Prognostics Data Repository - IMS
- 数据概况:由美国辛辛那提大学(University of Cincinnati)IMS(Intelligent Maintenance System)实验室采集的轴承加速度数据。
- 传感器布局:该数据集中放置了若干个加速度传感器(通常是四个),分别在不同轴承或不同位置测量加速度,但每个传感器往往是单轴。
- 是否三轴:并非单个传感器三轴采集,而是多个单轴传感器。虽然它有“多通道”,但并不是“三轴加速度”那种形式。
2. Case Western Reserve University Bearing Data(CWRU)
- 数据链接: CWRU Bearing Data Center
- 数据概况:最经典、最常被引用的轴承故障诊断数据集之一。包含正常与不同故障(内圈、外圈、滚动体)的加速度测量。
- 是否三轴:同样是单一方向或两方向的加速度测量,常见公开版本多为单轴或“驱动端+风扇端”两点测量。近年来个别改进版本可能在文献中出现了双轴或三轴测量,但官方最常见的公开版本并不是三轴。
- 特点:数据量丰富,转速/负载工况多,适用于入门故障诊断算法验证。
链接如下:
1:https://pan.baidu.com/s/10qebQp6_24OBidU1wjNfTg 提取码:3m52
2:https://pan.baidu.com/s/1EZXi9tYY8UeYxDjLKsMTlA?pwd=xkqz 提取码:xkqz
3:https://www.123pan.com/s/xBwHjv-WIzk.html提取码:EXLF
原文链接:https://blog.csdn.net/weixin_44330925/article/details/134594746
3. Paderborn University Bearing Dataset
- 数据链接: Paderborn University Dataset
- 数据概况:由德国帕德博恩大学提供的滚动轴承数据集,涵盖健康和多种故障模式,采样率较高,工作转速和负载也有变化。
- 是否三轴:目前公开的版本大多为单通道或多通道单轴数据(在不同轴承座或不同方向),并不是单个三轴传感器。
4. PRONOSTIA(FEMTO-ST)Dataset
- 数据链接: PRONOSTIA (FEMTO-ST)
- 数据概况:法国 FEMTO-ST 实验室(Boucief, Nectoux 等人)用于轴承剩余寿命(RUL)预测和故障诊断的公开数据集。
- 是否三轴:采集通道有加速度和转速、温度等,但大多数公开文件仍是单轴加速度,并未提供完整三轴。
5. XJTU-SY Bearing Datasets
- 数据链接: XJTU & SY Joint Bearing Data(也可在 GitHub、Mendeley 或其他站点找到镜像)
- 数据概况:由西安交通大学与某企业合作采集,包含不同转速、不同运行时长(直至发生故障)的滚动轴承全寿命数据。
- 是否三轴:官方公开的版本多为每个轴承座布置了一个传感器(单轴),并随着轴承劣化过程采集数据。非三轴。
6. SEU(Southeast University) Rolling Bearing Dataset
- 数据概况:东南大学和一些国内课题组发布过若干滚动轴承故障数据,采样率、故障类型与CWRU类似。
- 是否三轴:大多数在公开时也并未给到三轴版本,仍以单轴居多。
7. PHM Society / IEEE PHM Data Challenge 系列
- 数据链接: PHM Society Data Repository
- 数据概况:PHM Society、IEEE PHM Conference 等曾举办多届故障诊断与预测竞赛,部分竞赛数据会公开,如涡轮机、轴承、齿轮箱等。
- 是否三轴:需要具体看哪一届竞赛,大部分竞赛数据也多是单轴测量;不过也有少数任务使用到了三轴或多传感器融合,需要仔细查阅当年的数据说明。
8. 其他可能含“三轴”数据的来源
-
Mendeley / Kaggle / Zenodo 等学术开源平台
- 一些研究团队会在论文发表后,将数据上传到 Mendeley Data 或 Zenodo 进行分享,偶尔可见有 tri-axial accelerometer 数据的机械故障集。例如搜索关键词 “tri-axial accelerometer bearing dataset”、“machine fault tri-axis” 等,有时能找到个人或团队的独立数据分享。
- 这些数据规模可能不大、采集工况也比较单一,但胜在确实是三轴传感器。
-
论文附录 / GitHub
- 有些团队在发表与“三轴传感器故障诊断”相关的论文后,会在论文附录或个人/课题组 GitHub 提供数据下载。有些属于短期试验或小规模案例,不过如果确实需要三轴,可以在文献中搜索相关关键词。
-
工业级设备供应商 / 传感器厂商合作试验
- 有些在校企合作项目里,会采集真实设备上的三轴振动数据,但往往不对外公开,仅在内部或特定项目中使用。
1. 华中科技大学轴承数据集(HUST Bearing Dataset)
- 描述:包含不同转速下正常轴承、轻微故障轴承和严重故障轴承的振动信号,涵盖内圈故障、外圈故障、滚动体故障及复合故障等多种状态。
- 特点:数据采集自三向加速度传感器,适用于信号处理、智能诊断、领域泛化和迁移学习等研究。
- 链接:HUST Bearing Dataset
2. 齿轮箱故障诊断数据集
- 描述:包含不同工作条件下齿轮箱的振动信号,涵盖多种故障类型。
- 特点:
- 华中科技大学齿轮箱数据集:涵盖30种不同工况。
- 行星齿轮箱数据集:用于行星齿轮箱健康状态识别的深度学习研究。
- 增强型齿轮箱故障诊断数据集:使用SpectraQuest齿轮箱故障诊断模拟器记录,涵盖不同负载条件。
- 链接:
3. 广油工业旋转大机组故障诊断样本数据库
- 描述:包含烟机、汽轮机、压缩机、发电机等多种工业旋转机械的振动信号数据。
- 特点:数据集包含正常数据和8类故障数据,涵盖不对中、传感器故障、喘振、断叶片等多种故障类型。
- 链接:广油工业旋转大机组故障诊断样本数据库
4. 机械故障诊断振动信号数据集
- 描述:包含多个振动信号示例,适用于故障检测、设备健康监测和预测性维护。
- 特点:数据来源于汽车引擎、风力涡轮机、工业泵等旋转机械,格式通常为CSV文件。
- 链接:
5. 辛辛那提大学轴承数据集
- 描述:覆盖轴承从新到损毁的全生命周期过程,包含多种工作条件下的振动信号。
- 特点:通过高精度传感器采集,模拟真实世界中的工作场景。
- 链接:辛辛那提大学轴承数据集
1. 三轴电机轴承振动数据集
- 来源:Mendeley平台
- 描述:
该数据集包含感应电动机轴承在不同负载(100W、200W、300W)下的三轴(x、y、z轴)振动数据,采样率为10 kHz。涵盖健康状态、内圈和外圈故障(故障尺寸为0.7mm至1.7mm),共38种轴承状态数据。 - 适用场景:
基础的轴承故障诊断任务,尤其适合研究不同负载条件下故障严重程度的影响。 - 下载链接:Mendeley数据平台
- 引用:
2. 江苏科技大学回转支承数据集
- 来源:Mendeley平台
- 描述:
包含回转支承在9种工况下的振动信号(垂直和水平方向)及声发射信号。数据明确标注了故障类型(健康N、内圈故障I、外圈故障O、滚动体故障B1)、转速、载荷等信息。每个CSV文件包含7列数据,其中振动信号覆盖多轴方向。 - 适用场景:
多工况下的复合故障诊断,支持变转速和负载条件下的迁移学习任务。 - 下载链接:Mendeley数据平台
- 引用:
3. 渥太华大学轴承数据集
- 来源:Mendeley平台
- 描述:
包含时变转速条件下轴承的振动信号(加速度计测量)和转速数据(编码器测量),采样率为200 kHz。数据集覆盖健康、内圈故障、外圈故障三种状态,并包含转速变化(如增速、减速等)的多种工况。 - 适用场景:
动态转速条件下的故障诊断研究,适合研究转速变化对故障特征的影响。 - 下载链接:Mendeley数据平台
- 引用:
4. 东南大学(SEU)齿轮箱数据集
- 来源:FigShare平台
- 描述:
虽然主要针对齿轮箱故障,但数据集包含多轴振动信号(x、y、z三个方向的行星齿轮箱振动信号),覆盖健康状态和多种齿轮故障(如裂纹、断齿、磨损等),适合多轴信号联合分析。 - 适用场景:
齿轮箱复合故障诊断,多轴信号特征融合研究。 - 下载链接:FigShare平台
- 引用:
5. 华中科技大学(HUST)轴承数据集
- 来源:未提供直接链接(需通过学术渠道获取)
- 描述:
包含5种轴承在3种工况下的振动数据,覆盖内圈、外圈、滚动体等6种缺陷类型,采样率为51.2 kHz。数据集未明确说明是否为三轴,但高采样率支持多维度信号分析。 - 适用场景:
多类型轴承缺陷的诊断及复合故障研究。 - 引用:
其他相关数据集
- 凯斯西储大学(CWRU)轴承数据集:虽然主要使用单轴振动信号,但其高精度和广泛适用性常被用于基准测试。
- 帕德博恩大学(PU)轴承数据集:包含复合故障数据,但振动信号采集维度未明确说明。
数据集选择建议
- 三轴信号优先:若需直接研究三轴振动特征,推荐选择三轴电机轴承振动数据集和江苏科技大学回转支承数据集。
- 动态工况研究:渥太华大学数据集适合转速变化场景的故障诊断。
- 复合故障分析:东南大学齿轮箱数据集和PU轴承数据集支持复合故障研究。