使用 Ollama 部署 DeepSeek R1 本地模型

最近 DeepSeek 火的一塌糊涂,也算是国产 AI 的一丝曙光,DeepSeek 的 R1 模型支持本地部署,相比较在线的 DeepSeek,本地部署具有以下优点:

  1. 支持离线使用,可以在不联网的环境下正常使用
  2. 个性化训练,可以针对你的业务场景或者需求,对大模型进行专门的训练
  3. 信息安全,你上传和提问的信息和内容,不会通过互联网传输到 DeppSeek 的服务器,减小了信息泄露的风险
  4. 可以问的问题更加全面,一些敏感的问题也可以问,当然,也要遵守法律法规

当然,DeepSeek R1 模型满血版本需要极高的配置要求,部署在自己的电脑上的 DeepSeek 相比较在线版的,会显得笨一些,DeepSeek 官方提供了多个版本的模型,分为 1.5b,7b,8b,14b,32b,70b,671b。数字越大,AI
就越聪明,相应的所需的配置就越高。在线版的 671b 需要上百张顶级配置的显卡才能带得动,1.5b 的话一般的4核CPU以上的家用电脑都可以带动,我的8G显存的电脑可以带 14b,运行起来稍微有点慢,可以流畅使用 8b

安装 ollama

  1. 在官网找到 download,下载 ollama 安装包,安装到你的电脑
  2. 安装完成后,在 ollama 官网,找到你想要下载的模型,比如 deepseek R1 模型,https://ollama.com/library/deepseek-r1
  3. 在你电脑的终端,拉取模型: ollama pull deepseek-r1:1.5b,拉取过程中如果网络很慢,可以试试 Ctrl + C 停止拉取,然后再重新拉取,会快一些
  4. 拉取完成之后,可以通过 ollama list 命令查看你本地已经安装的模型列表
  5. 通过 ollama run deepseek-r1:1.5b 命令,即可运行模型,现在,就可以在终端使用 AI 了

可视化界面

  • 可以通过一些第三方的 UI 界面,连接到你本地的 ollama 模型
ChatBox
  • ChatBox AI 是一款 AI 客户端应用和智能助手,支持众多先进的 AI 模型和 API,可
基于gcc的stm32环境搭建源码+文档说明.zip,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的
### 部署DeepSeek R1模型并将其与Excel集成 #### 在本地Ollama环境部署DeepSeek R1模型 为了在本地Ollama环境中成功部署DeepSeek R1模型,需遵循特定步骤来确保顺利安装。首先确认已正确配置好Ollama环境[^1]。 通过命令提示符启动所需操作,在Windows操作系统下可以通过按下`Win`键打开应用程序列表,并利用搜索栏输入“CMD”,从而调出命令提示符窗口[^2]。一旦进入命令行界面,则可执行用于下载和设置DeepSeek R1模型的相关指令: ```bash ollama pull deepseek/r1 ``` 此命令告知Ollama平台拉取指定版本的DeepSeek R1模型本地存储空间内完成初步部署工作。 #### 将DeepSeek R1模型与Excel连接 对于希望将上述已经部署完毕的AI能力嵌入日常办公软件如Microsoft Excel之中使用的场景来说,存在多种方法可供选择。一种较为简便的方式是借助Python脚本作为桥梁实现自动化处理流程;另一种则是采用VBA宏编程直接操控文档内部逻辑结构。这里推荐使用前者——即编写一段简单的Python程序来调用RESTful API接口访问由Ollama托管的服务端点,并读写Excel文件数据。 下面给出了一段示范性的Python代码片段,展示了怎样创建这样一个简易的应用程序框架: ```python import requests from openpyxl import load_workbook, Workbook def query_deepseek(prompt): url = "http://localhost:8000/api/v1/predict" headers = {"Content-Type": "application/json"} data = {"prompt": prompt} response = requests.post(url=url, json=data, headers=headers) result = response.json() return result['text'] wb = load_workbook('example.xlsx') ws = wb.active for row in ws.iter_rows(min_row=2, max_col=1, values_only=True): question = str(row[0]) answer = query_deepseek(question) cell_to_update = f'B{row[0].row}' ws[cell_to_update] = answer wb.save('output.xlsx') ``` 这段代码实现了从名为`example.xlsx`的工作簿里逐行提取待解答问题并向DeepSeek服务发起请求获取回应的过程,最后再把得到的结果保存回新的表格文件当中去。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值