文章目录
统计推断的基本问题可以分为两大类,一类是估计问题,另一类是假设检验问题。本文讨论总体参数的点估计和区间估计。
参数估计讲什么
- 由样本来确定未知参数
- 参数估计分为点估计与区间估计
一. 点估计
根据样本求分布函数的未知参数
设总体X的分布函数的形式已知,但它的一个或多个参数未知,借助于总体X的一个样本来估计总体未知参数的值的问题称为参数的点估计问题。
点估计的一般提法
- 根据样本构造一个统计量(样本的函数),统计量的观察值作为位置参数的估计值
- 不同的样本值,估计值一般不同。
构造估计量 ( X 1 , X 2 . . . , ) (X_1, X_2..., ) (X1,X2...,)的方法很多,下面介绍常用的矩估计法和极大似然估计法。
1. 矩估计法
用样本矩作为总体矩的估计量的原因
样本矩在一定程度上反映了总体矩的特征,且在样本容量n增大的条件下,样本的k阶
原点矩
A k = 1 / n ∑ i = 1 n X i k A_k=1/n\sum_{i=1}^{n}X_i^k Ak=1/n∑i=1nXik 依概率收敛
到总体X的k阶原点矩 μ k = E ( X k ) μ_k=E(X^k) μk=E(Xk),即 A k − P > μ k A_k-^P> μ_k Ak−P>μk(n →∞), k=1,2,…。
所以自然想到用样本矩作为相应总体矩的估计量
,而以样本矩的连续函数作为相应总体矩的连续函数的估计量
,这种估计方法就称为矩估计法。
矩估计法的一般做法
已知总体 X ∼ F