【概率论与数理统计】【第七章】参数估计:点估计(矩估计、极大似然法)、区间估计

统计推断的基本问题可以分为两大类,一类是估计问题,另一类是假设检验问题。本文讨论总体参数的点估计和区间估计。

参数估计讲什么

  1. 由样本来确定未知参数
  2. 参数估计分为点估计与区间估计

在这里插入图片描述

一. 点估计

根据样本求分布函数的未知参数

设总体X的分布函数的形式已知,但它的一个或多个参数未知,借助于总体X的一个样本来估计总体未知参数的值的问题称为参数的点估计问题。

点估计的一般提法

在这里插入图片描述

  1. 根据样本构造一个统计量(样本的函数),统计量的观察值作为位置参数的估计值
  2. 不同的样本值,估计值一般不同。

构造估计量 ( X 1 , X 2 . . . , ) (X_1, X_2..., ) (X1,X2...)的方法很多,下面介绍常用的矩估计法和极大似然估计法。

 

1. 矩估计法

用样本矩作为总体矩的估计量的原因

样本矩在一定程度上反映了总体矩的特征,且在样本容量n增大的条件下,样本的k阶原点矩 A k = 1 / n ∑ i = 1 n X i k A_k=1/n\sum_{i=1}^{n}X_i^k Ak=1/ni=1nXik 依概率收敛到总体X的k阶原点矩 μ k = E ( X k ) μ_k=E(X^k) μk=E(Xk),即 A k − P > μ k A_k-^P> μ_k AkP>μk(n →∞), k=1,2,…。

所以自然想到用样本矩作为相应总体矩的估计量,而以样本矩的连续函数作为相应总体矩的连续函数的估计量,这种估计方法就称为矩估计法。

在这里插入图片描述

 

矩估计法的一般做法

已知总体 X ∼ F

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

roman_日积跬步-终至千里

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值