数字信号处理——离散时间系统

离散时间系统

1 定义

  • 离散系统将一个序列转换、映射成另一个序列。
  • 系统三要素:
    在这里插入图片描述
    • 输入: x [ n ] x[n] x[n]
    • 输出: y [ n ] y[n] y[n]
    • 输入与输出关系: y [ n ] = f ( x [ n ] ) , ∀ n y[n] = f(x[n]),\forall n y[n]=f(x[n]),n

2 基本离散时间系统

(1) 累加器:输出是当前时刻之前所有输入之和
在这里插入图片描述

y [ n ] = ∑ l = − ∞ n x [ j ] = ∑ l = − ∞ n − 1 x [ j ] + x [ n ] = y [ n − 1 ] + x [ n ] y[n] = \sum_{l=-\infty}^n x[j] = \sum_{l=-\infty}^{n-1} x[j] + x[n] = y[n-1] + x[n] y[n]=l=nx[j]=l=n1x[j]+x[n]=y[n1]+x[n]
(2) 滑动平均滤波器
在这里插入图片描述

y [ n ] = 1 M ∑ l = 0 M − 1 x [ n − l ] y[n] = \frac 1 M \sum_{l = 0}^{M - 1}x[n-l] y[n]=M1l=0M1x[nl]

  • 滑动平均滤波器可消除信号的急剧变化,如噪声:
    x [ n ] = s [ n ] + d [ n ] x[n] = s[n] + d[n] x[n]=s[n]+d[n]
    y [ n ] = 1 5 ∑ k = 0 4 x [ n − k ] y[n] = \frac 1 5 \sum_{k=0}^4 x[n-k] y[n]=51k=04x[nk]
  • 快速形式
    在这里插入图片描述 y [ n ] = 1 M ∑ l = 0 M − 1 x [ n − l ] = 1 M ( ∑ l = 0 M − 1 x [ n − l ] + x [ n − M ] − x [ n − M ] ) = 1 M ( ∑ l = 1 M x [ n − l ] + x [ n ] − x [ n − M ] ) = y [ n − 1 ] + 1 M ( x [ n ] − x [ n − M ] ) y[n] = \frac 1M \sum_{l = 0}^{M - 1}x[n-l] = \frac 1M (\sum_{l = 0}^{M - 1}x[n-l] + x[n-M] - x[n-M]) \\ = \frac 1M (\sum_{l = 1}^{M}x[n-l] + x[n] - x[n-M]) = y[n-1] + \frac1M (x[n] - x[n-M]) y[n]=M1l=0M1x[nl]=M1(l=0M1x[nl]+x[nM]x[nM])=M1(l=1Mx[nl]+x[n]x[nM])=y[n1]+M1(x[n]x[nM])

3 分类

(1) 线性系统
线性系统遵循叠加原理:定义输入 x 1 [ n ] → x_1[n] \rightarrow x1[n]输出 y 1 [ n ] y_1[n] y1[n]
x 2 [ n ] → y 2 [ n ] . . . x_2[n] \rightarrow y_2[n] ... x2[n]y2[n]...,若系统输入为以上信号的线性组合: x [ n ] = α x 1 [ n ] + β x 2 [ n ] x[n] = \alpha x_1[n] + \beta x_2[n] x[n]=αx1[n]+βx2[n],则输出一定满足: y [ n ] = α y 1 [ n ] + β y 2 [ n ] y[n] = \alpha y_1[n] + \beta y_2[n] y[n]=αy1[n]+βy2[n]
(2) 时不变系统

时不变系统输入的偏移将导致输出也有同样的偏移:即如果 x 1 [ n ] → y 1 [ n ] x_1[n] \rightarrow y_1[n] x1[n]y1[n],则一定满足 x [ n ] = x 1 [ n − n 0 ] ⇉ y [ n ] = y 1 [ n − n 0 ] x[n] = x_1[n - n_0] \rightrightarrows y[n] = y_1[n - n_0] x[n]=x1[nn0]y[n]=y1[nn0]

时不变系统的以上特性不依赖与n的取值(与输入施加到系统的时刻无关)

线性时不变系统

  • 这类系统既满足线性又满足时不变
  • 很容易从数学上分析和处理,被广泛使用且非常有用的一类系统
  • 线性移不变系统:如果索引为时间,则称为线性时不变系统,反之,则称为线性移不变系统。

(3) 因果系统

如果系统输出仅依赖与过去和现在时刻的输入(与将来的输入无关),在满足这种条件的系统称为因果系统。

即若存在输入输出关系对: x 1 [ n ] → y 1 [ n ] x_1[n]\rightarrow y_1[n] x1[n]y1[n] x 2 [ n ] → y 2 [ n ] x_2[n]\rightarrow y_2[n] x2[n]y2[n],则因果系统满足: x 1 [ n ] = x 2 [ n ] ∀ n < N ⇔ y 1 [ n ] = y 2 [ n ] ∀ n < N x_1[n] = x_2[n] \forall n<N \Leftrightarrow y_1[n] = y_2[n] \forall n<N x1[n]=x2[n]n<Ny1[n]=y2[n]n<N

(4) 稳定系统

BIBO系统:若x[n]的系统响应是y[n],且对于所有的n值:
∣ x [ n ] ∣ < B x |x[n]|<B_x x[n]<Bx
即输入为有界序列,则对于所有的n值,输出也为有界序列:
∣ y [ n ] ∣ < B y |y[n]|<B_y y[n]<By

线性时不变系统(时域)

冲激响应

(1)定义:

给定一个系统,当输入为冲激函数 δ [ n ] \delta[n] δ[n]时,系统输出为冲激响应h[n]

线性时不变系统完全由冲激响应h[n]确定

(2)输入输出关系:

任意一个序列可表示为基础序列与其延迟或超前版本的加权和:
x [ n ] = ∑ k = − ∞ ∞ x [ k ] δ [ n − k ] x[n] = \sum_{k = -\infty}^{\infty}x[k]\delta[n - k] x[n]=k=x[k]δ[nk]
换一种表示,上式可理解为任意序列x[n]可看作本省与 δ [ n ] \delta[n] δ[n]的卷积

因此对于LTI系统,由y[n] = x[n] * h[n]

(3)系统级联:

若两个系统分别具有冲激响应 h 1 [ n ] h_1[n] h1[n] h 2 [ n ] h_2[n] h2[n],则两者级联的冲激响应h[n]为 h [ n ] = h 1 [ n ] ∗ h 2 h[n] = h_1[n]*h_2 h[n]=h1[n]h2

(4)逆系统:

考虑:
z [ n ] = h 2 [ n ] ∗ y [ n ] = h 2 [ n ] ∗ h 1 [ n ] ∗ x [ n ] z[n] = h_2[n]*y[n] = h_2[n]*h_1[n]*x[n] z[n]=h2[n]y[n]=h2[n]h1[n]x[n]
如果: h 2 [ n ] = δ [ n ] h_2[n] = \delta [n] h2[n]=δ[n],则称 h 2 [ n ] h_2[n] h2[n] h 1 [ n ] h_1[n] h1[n]的逆系统

(5)系统并联:

两个系统的冲激响应相加就是其并联系统的冲激响应:
h [ n ] = h 1 [ n ] + h 2 [ n ] h[n] = h_1[n] + h_2[n] h[n]=h1[n]+h2[n]

因果稳定

对于LTI系统:

  • 稳定性:冲激响应h[n]满足绝对可和
  • 因果性:冲激响应h[n]为因果序列

(1)稳定性条件

  • BIBO稳定性:有界输入 ∣ x [ n ] ∣ ⩽ B x < ∞ |x[n]| \leqslant B_x < \infty x[n]Bx<产生有界输出。
  • 充分性:若h[n]满足绝对可和:
    ∣ y [ n ] ∣ ⩽ ∑ k = − ∞ ∞ ∣ x [ n − k ] ∣ ∣ h [ k ] ⩽ B x ∑ k = − ∞ ∞ ∣ h [ k ] ∣ < ∞ |y[n]| \leqslant \sum_{k = -\infty}^\infty |x[n-k]||h[k]\leqslant B_x \sum_{k = -\infty}^\infty|h[k]|<\infty y[n]k=x[nk]∣∣h[k]Bxk=h[k]<
  • 必要性:反之,若h[n]不满足绝对可和,假设输入 x [ n ] = s i g n ( h [ − n ] ) : x[n] = sign(h[-n]): x[n]=sign(h[n]):

y [ 0 ] = ∑ k = − ∞ ∞ ∣ x [ − k ] ∣ ∣ h [ k ] ∣ = ∑ k = − ∞ ∞ ∣ h [ k ] ∣ = ∞ y[0] = \sum_{k = -\infty}^\infty |x[-k]||h[k]| = \sum_{k = -\infty}^\infty |h[k]| = \infty y[0]=k=x[k]∣∣h[k]=k=h[k]=
其不满足BIBO稳定性条件

(2) 因果性条件

  • 假设输入 x 1 [ n ] , x 2 [ n ] x_1[n],x_2[n] x1[n],x2[n]满足:
    x 1 [ n ] = x 2 [ n ] , ∀ n ⩽ n 0 x_1[n] = x_2[n] , \forall n \leqslant n_0 x1[n]=x2[n],nn0
    x 1 [ n ] ≠ x 2 [ n ] , ∀ n > n 0 x_1[n] \not ={} x_2[n] , \forall n > n_0 x1[n]=x2[n],n>n0
  • 考虑当 n = n 0 n = n_0 n=n0时的输出:
    y 1 [ n 0 ] = ∑ k = 0 ∞ h [ k ] x 1 [ n 0 − k ] + ∑ k = − ∞ − 1 h [ k ] x 1 [ n 0 − k ] y_1[n_0] = \sum_{k = 0}^\infty h[k]x_1[n_0-k]+\sum_{k = -\infty}^{-1} h[k]x_1[n_0-k] y1[n0]=k=0h[k]x1[n0k]+k=1h[k]x1[n0k]
    y 2 [ n 0 ] = ∑ k = 0 ∞ h [ k ] x 2 [ n 0 − k ] + ∑ k = − ∞ − 1 h [ k ] x 2 [ n 0 − k ] y_2[n_0] = \sum_{k = 0}^\infty h[k]x_2[n_0-k]+\sum_{k = -\infty}^{-1} h[k]x_2[n_0-k] y2[n0]=k=0h[k]x2[n0k]+k=1h[k]x2[n0k]
  • 因此,可确定冲激响应的因果性:
    h [ k ] = 0 , k < 0 h[k] = 0,k<0 h[k]=0,k<0

系统分类

  • 基于冲激响应长度
    • 有限冲激响应(FIR)
    • 无限冲激响应(IIR)
  • 基于冲激响应系统
    • 实离散时间系统
    • 复离散时间系统
  • 基于输出计算过程
    • 非递归离散时间系统
    • 递归离散时间系统

线性时不变系统(频域)

频率响应

(1)定义
一个线性时不变系统对复指数信号的响应也是同样一个复指数信号,不同的只是幅度上的变化。

当输入为复指数时,即 x [ n ] = e j ω 0 n x[n] = e^{j\omega_0n} x[n]=ejω0n
其输出 y [ n ] = ∑ m h [ m ] e j ω 0 ( n − m ) = ∑ m h [ m ] e − j ω 0 m e j ω 0 n = H ( e j ω 0 ) x [ n ] = ∣ H ( e j ω 0 ) ∣ e j ( ω 0 n + θ ( ω 0 ) ) y[n] = \sum_m h[m]e^{j\omega_0(n-m)} = \sum_m h[m]e^{-j\omega_0m}e^{j\omega_0n} = H(e^{j\omega_0})x[n] = |H(e^{j\omega_0})|e^{j(\omega_0n + \theta(\omega_0))} y[n]=mh[m]ejω0(nm)=mh[m]ejω0mejω0n=H(ejω0)x[n]=H(ejω0)ej(ω0n+θ(ω0))

其中 H ( e j ω 0 ) H(e^{j\omega_0}) H(ejω0)被称作LTI离散时间系统的频率响应

(2)实正弦
一个频率为 ω 0 \omega_0 ω0的实正弦信号通过一个具有实冲激函数h[n]的LSI系统,具有增益放缩 ∣ H ( e j ω 0 ) ∣ |H(e^{j\omega_0})| H(ejω0)向往平移 θ ( ω 0 ) \theta(\omega_0) θ(ω0)
A c o s ( ω 0 n + ϕ ) ∗ h [ n ] = A ∣ H ( e j ω 0 ) ∣ c o s ( ω 0 n + ϕ + θ ( ω 0 ) ) Acos(\omega_0n+\phi) * h[n] = A|H(e^{j\omega_0})|cos(\omega_0n+\phi+\theta(\omega_0)) Acos(ω0n+ϕ)h[n]=AH(ejω0)cos(ω0n+ϕ+θ(ω0))

(3)因果指数序列的暂态响应与稳态响应
y [ n ] = x [ n ] ∗ h [ n ] = ∑ m = − ∞ n h [ m ] e j ω 0 ( n − m ) − ∑ m = n + 1 ∞ h [ m ] e j ω 0 ( n − m ) = H ( e j ω 0 ) e j ω 0 n − ( ∑ m = n + 1 ∞ h [ m ] e − j ω 0 m ) e j ω 0 n y[n] = x[n] * h[n] = \sum_{m = -\infty}^n h[m]e^{j\omega_0(n-m)} - \sum_{m = n + 1}^\infty h[m]e^{j\omega_0(n-m)} = H(e^{j\omega_0})e^{j\omega_0n} - (\sum_{m = n + 1}^\infty h[m]e^{-j\omega_0m})e^{j\omega_0n} y[n]=x[n]h[n]=m=nh[m]ejω0(nm)m=n+1h[m]ejω0(nm)=H(ejω0)ejω0n(m=n+1h[m]ejω0m)ejω0n
暂态响应: H ( e j ω 0 ) e j ω 0 n H(e^{j\omega_0})e^{j\omega_0n} H(ejω0)ejω0n,与纯正弦输入相同
稳态响应: ( ∑ m = n + 1 ∞ h [ m ] e − j ω 0 m ) e j ω 0 n (\sum_{m = n + 1}^\infty h[m]e^{-j\omega_0m})e^{j\omega_0n} (m=n+1h[m]ejω0m)ejω0n,门控的结果

简单滤波器

  • 核心思想:用设计的 H ( e j ω 0 ) H(e^{j\omega_0}) H(ejω0)分离频率信息
    如: x [ n ] = A c o s ( ω 1 n ) + B c o s ( ω 2 n ) x[n] = Acos(\omega_1n)+Bcos(\omega_2n) x[n]=Acos(ω1n)+Bcos(ω2n)
  • 构建一个滤波器 ∣ H ( e j ω 1 ) ∣ ≈ 1 |H(e^{j\omega_1})| \approx 1 H(ejω1)1 ∣ H ( e j ω 2 ) ∣ ≈ 0 |H(e^{j\omega_2})| \approx 0 H(ejω2)0
    y [ n ] = h [ n ] ∗ x [ n ] ≈ A c o s ( ω 1 n + θ ( ω 1 ) ) y[n] = h[n] * x[n] \approx Acos(\omega_1n+\theta(\omega_1)) y[n]=h[n]x[n]Acos(ω1n+θ(ω1))

三点滤波器: h [ n ] = α     β     α h[n] = {\alpha ~~~ \beta ~~~ \alpha} h[n]=α   β   α
频率响应: ∣ H ( e j ω 0 ) ∣ = ∣ β + 2 α c o s ( ω 0 ) ∣ |H(e^{j\omega_0})| = |\beta+2\alpha cos(\omega_0)| H(ejω0)=β+2αcos(ω0)

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值