昇思25天学习打卡营第1天 | 快速入门

使用MindSpore API实现简单深度学习模型

引用API

import mindspore
from mindspore import nn
from mindspore.dataset import vision, transforms
from mindspore.dataset import MnistDataset

处理数据集

下载数据集

# Download data from open datasets
from download import download
​
url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
      "notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)
Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/MNIST_Data.zip (10.3 MB)
​
file_sizes: 100%|███████████████████████████| 10.8M/10.8M [00:00<00:00, 144MB/s]
Extracting zip file...
Successfully downloaded / unzipped to ./

下载完成后可见数据集目录结构

MNIST_Data
└── train
    ├── train-images-idx3-ubyte (60000个训练图片)
    ├── train-labels-idx1-ubyte (60000个训练标签)
└── test
    ├── t10k-images-idx3-ubyte (10000个测试图片)
    ├── t10k-labels-idx1-ubyte (10000个测试标签)

数据集操作

# 获得数据集对象
train_dataset = MnistDataset('MNIST_Data/train')
test_dataset = MnistDataset('MNIST_Data/test')

打印数据集中包含的数据列名,用于dataset的预处理

print(train_dataset.get_col_names())
['image', 'label']

使用map函数对图像数据及标签变换处理,然后batch函数打包数据集。

def datapipe(dataset, batch_size):
    image_transforms = [
        vision.Rescale(1.0 / 255.0, 0),
        vision.Normalize(mean=(0.1307,), std=(0.3081,)),
        vision.HWC2CHW()
    ]
    label_transform = transforms.TypeCast(mindspore.int32)
​
    dataset = dataset.map(image_transforms, 'image')
    dataset = dataset.map(label_transform, 'label')
    dataset = dataset.batch(batch_size)
    return dataset

将处理好的数据集打包为大小为64的batch

# Map vision transforms and batch dataset
train_dataset = datapipe(train_dataset, 64)
test_dataset = datapipe(test_dataset, 64)

使用create_tuple_iterator 或create_dict_iterator对数据集进行迭代访问,查看数据和标签的shape和datatype。

# create_tuple_iterator
for image, label in test_dataset.create_tuple_iterator():
    print(f"Shape of image [N, C, H, W]: {image.shape} {image.dtype}")
    print(f"Shape of label: {label.shape} {label.dtype}")
    break
Shape of image [N, C, H, W]: (64, 1, 28, 28) Float32
Shape of label: (64,) Int32
# create_dict_iterator
for data in test_dataset.create_dict_iterator():
    print(f"Shape of image [N, C, H, W]: {data['image'].shape} {data['image'].dtype}")
    print(f"Shape of label: {data['label'].shape} {data['label'].dtype}")
    break
Shape of image [N, C, H, W]: (64, 1, 28, 28) Float32
Shape of label: (64,) Int32

网络构建

mindspore.nn类是构建所有网络的基类,也是网络的基本单元。当用户需要自定义网络时,可以继承nn.Cell类,并重写__init__方法和construct方法。__init__包含所有网络层的定义,construct中包含数据(Tensor)的变换过程。

# Define model
class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )
​
    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits
​
model = Network()
print(model)
Network<
  (flatten): Flatten<>
  (dense_relu_sequential): SequentialCell<
    (0): Dense<input_channels=784, output_channels=512, has_bias=True>
    (1): ReLU<>
    (2): Dense<input_channels=512, output_channels=512, has_bias=True>
    (3): ReLU<>
    (4): Dense<input_channels=512, output_channels=10, has_bias=True>
    >
  >

模型训练

模型训练三步走

  1. 正向计算:模型预测结果(logits),并与正确标签(label)求预测损失(loss)。

  2. 反向传播:利用自动微分机制,自动求模型参数(parameters)对于loss的梯度(gradients)。

  3. 参数优化:将梯度更新到参数上。

# Instantiate loss function and optimizer
loss_fn = nn.CrossEntropyLoss()
optimizer = nn.SGD(model.trainable_params(), 1e-2)
​
# 1. Define forward function
def forward_fn(data, label):
    logits = model(data)
    loss = loss_fn(logits, label)
    return loss, logits
​
# 2. Get gradient function(value_and_grad)
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)
​
# 3. Define function of one-step training
def train_step(data, label):
    (loss, _), grads = grad_fn(data, label)
    optimizer(grads)
    return loss
​
def train(model, dataset):
    size = dataset.get_dataset_size()
    model.set_train()
    for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
        loss = train_step(data, label)
​
        if batch % 100 == 0:
            loss, current = loss.asnumpy(), batch
            print(f"loss: {loss:>7f}  [{current:>3d}/{size:>3d}]")

训练后,需要定义一个测试函数以评估模型性能

def test(model, dataset, loss_fn):
    num_batches = dataset.get_dataset_size()
    model.set_train(False)
    total, test_loss, correct = 0, 0, 0
    for data, label in dataset.create_tuple_iterator():
        pred = model(data)
        total += len(data)
        test_loss += loss_fn(pred, label).asnumpy()
        correct += (pred.argmax(1) == label).asnumpy().sum()
    test_loss /= num_batches
    correct /= total
    print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

迭代数据集相关概念

训练过程需多次迭代数据集,一次完整的迭代称为一轮(epoch)。在每一轮,遍历训练集进行训练,结束后使用测试集进行预测。打印每一轮的loss值和预测准确率(Accuracy),可以看到loss在不断下降,Accuracy在不断提高。

epochs = 3
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train(model, train_dataset)
    test(model, test_dataset, loss_fn)
print("Done!")
Epoch 1
-------------------------------
loss: 0.330054  [  0/938]
loss: 0.434025  [100/938]
loss: 0.129600  [200/938]
loss: 0.154334  [300/938]
loss: 0.092072  [400/938]
loss: 0.262538  [500/938]
loss: 0.366513  [600/938]
loss: 0.292299  [700/938]
loss: 0.239407  [800/938]
loss: 0.169028  [900/938]
Test: 
 Accuracy: 92.8%, Avg loss: 0.247737 
​
Epoch 2
-------------------------------
loss: 0.315685  [  0/938]
loss: 0.133240  [100/938]
loss: 0.300934  [200/938]
loss: 0.149830  [300/938]
loss: 0.346082  [400/938]
loss: 0.350824  [500/938]
loss: 0.221809  [600/938]
loss: 0.218873  [700/938]
loss: 0.385571  [800/938]
loss: 0.327509  [900/938]
Test: 
 Accuracy: 94.1%, Avg loss: 0.207035 
​
Epoch 3
-------------------------------
loss: 0.117105  [  0/938]
loss: 0.073975  [100/938]
loss: 0.065642  [200/938]
loss: 0.154363  [300/938]
loss: 0.189739  [400/938]
loss: 0.325832  [500/938]
loss: 0.178350  [600/938]
loss: 0.094985  [700/938]
loss: 0.225935  [800/938]
loss: 0.167045  [900/938]
Test: 
 Accuracy: 94.6%, Avg loss: 0.181408 
​
Done!

保存模型

# Save checkpoint
mindspore.save_checkpoint(model, "model.ckpt")
print("Saved Model to model.ckpt")

加载模型

加载保存的权重分为两步:

  1. 重新实例化模型对象,构造模型。

  2. 加载模型参数,并将其加载至模型上。

# Instantiate a random initialized model
model = Network()
# Load checkpoint and load parameter to model
param_dict = mindspore.load_checkpoint("model.ckpt")

利用加载后的模型预测推理。

model.set_train(False)
for data, label in test_dataset:
    pred = model(data)
    predicted = pred.argmax(1)
    print(f'Predicted: "{predicted[:10]}", Actual: "{label[:10]}"')
    break
Predicted: "[8 9 9 8 4 4 4 9 9 9]", Actual: "[0 7 1 5 0 7 3 8 1 7]"

总结

深度学习大致流程如下

下载、处理数据集 -> 网络构建 -> 模型训练 -> 保存、加载模型

  1. 数据处理

    1. 使用map函数进行变换,datapipe函数打包成固定大小的batch。

    2. 使用create_tuple_iteratorcreate_dict_iterator对数据集进行迭代访问,查看数据和标签的shape和datatype。

  2. 网络构建

    1. 继承nn.cell类,通过重写__init__construct方法自定义网络,其中construct方法包含数据变换过程

  3. 模型训练

    1. 训练流程

      1. 正向计算:模型预测结果(logits),并与正确标签(label)求预测损失(loss)。

      2. 反向传播:利用自动微分机制,自动求模型参数(parameters)对于loss的梯度(gradients)。

      3. 参数优化:将梯度更新到参数上。

    2. 评估模型性能

      1. 定义测试函数评估性能

      2. 多次迭代数据集

  4. 保存、加载模型

    1. 保存:save_checkpoint()

    2. 加载:load_checkpoint()

import time
print(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime()), 'Mindstorm')
2024-06-19 10:57:35 Mindstorm
  • 10
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值