昇思25天学习打卡营第1天|快速入门

24 篇文章 0 订阅
22 篇文章 0 订阅

昇思学习心得记录🚀

在这里插入图片描述

什么是昇思MindSpore?

昇思MindSpore是一个全场景深度学习框架,旨在实现易开发、高效执行、全场景统一部署三大目标。简单来说,它能帮你在AI的世界里快速上手,从数据处理、模型训练到部署,一站搞定!

MindSpore都能干什么?

在这里插入图片描述

  • ModelZoo(模型库):提供现成的深度学习算法网络,还能让你贡献自己的网络模型。🎨
  • MindSpore Extend(扩展库):支持拓展新领域场景,如GNN、深度概率编程、强化学习等,期待更多开发者来一起贡献。🔍
  • MindSpore Science(科学计算):专为科学计算打造,提供高精度模型和工具,加速科学行业应用开发。🔬
  • MindExpression(全场景统一API):基于Python的前端接口,支持函数/OOP编程范式融合、AI+数值计算融合。💻
  • 第三方前端:支持多语言前端表达,未来会提供C/C++等前端的对接工作,引入更多第三方生态。🌐
  • MindSpore Data(数据处理层):提供高效的数据处理和编程接口,支持灵活定义和优化数据处理流程。📊
  • MindCompiler(AI编译器):实现硬件无关和相关优化、部署推理优化等功能,让模型更高效运行。⚙️
  • MindRT(全场景运行时):支持云侧、端侧及IoT设备的运行时系统。🌩️
  • MindSpore Insight(可视化调试调优工具):可视化查看训练过程、优化模型性能、调试精度问题等。📈
  • MindSpore Armour(安全增强库):提供安全与隐私保护功能,如对抗鲁棒性、模型安全测试、差分隐私训练等。🔒

MindSpore的执行流程

在这里插入图片描述

MindSpore的基本流程大致如下:

  1. 数据处理:准备和处理你的数据。
  2. 模型训练:使用MindSpore进行模型训练和评估。
  3. 模型保存:保存训练好的模型以供后续使用。

快速入门:深度学习模型例子

想要用MindSpore快速上手一个深度学习模型?来看这个例子吧!不过要注意,这里需要有一定的Python基础哦。

打开Jupyter笔记文档,在02-快速入门章节中,来试着学会如何使用MindSpore。

准备工作

我的习惯一般都是在log日志中查看结果,所以用鼠标右键点击页面,打开控制台。
在这里插入图片描述

开始运行

  1. 配置AI训练的环境
    在这里插入图片描述

    %%capture captured_output
    # 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
    !pip uninstall mindspore -y
    !pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
    

    用鼠标点击单元格,然后点击标题栏中的运行按钮。
    OK 什么也没打印,没有什么结果,实验环境已经预装了mindspore==2.2.14

  2. 导入需要的包

    import mindspore
    from mindspore import nn
    from mindspore.dataset import MnistDataset, transforms, vision
    
  3. 数据的处理
    MindSpore提供基于Pipeline的数据引擎,通过数据集(Dataset)和数据变换(Transforms)实现高效的数据预处理。在本教程中,我们使用Mnist数据集,自动下载完成后,使用mindspore.dataset提供的数据变换进行预处理。

    # Download data from open datasets
    from download import download
    
    url = (
        "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/"
        "notebook/datasets/MNIST_Data.zip"
    )
    path = download(url, "./", kind="zip", replace=True)
    

    运行结果如下:

    Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/MNIST_Data.zip (10.3 MB)
    file_sizes: 100%|███████████████████████████| 10.8M/10.8M [00:00<00:00, 150MB/s]
    Extracting zip file…
    Successfully downloaded / unzipped to ./

  4. 数据下载完成后,获得数据集对象。
    我们这会需要的数据集的目录结构如下:
    MNIST数据集目录结构如下:

     MNIST_Data
     └── train
         ├── train-images-idx3-ubyte (60000个训练图片)
         ├── train-labels-idx1-ubyte (60000个训练标签)
     └── test
         ├── t10k-images-idx3-ubyte (10000个测试图片)
         ├── t10k-labels-idx1-ubyte (10000个测试标签)
    
    train_dataset = MnistDataset("MNIST_Data/train")
    test_dataset = MnistDataset("MNIST_Data/test")
    
  5. 打印数据集中包含的数据列名,用于dataset的预处理

    print(train_dataset.get_col_names())
    

    [‘image’, ‘label’]

  6. 数据集打包
    MindSpore的dataset使用数据处理流水线(Data Processing Pipeline),需指定map、batch、shuffle等操作。这里我们使用map对图像数据及标签进行变换处理,然后将处理好的数据集打包为大小为64的batch。

    def datapipe(dataset, batch_size):
        image_transforms = [
            vision.Rescale(1.0 / 255.0, 0),
            vision.Normalize(mean=(0.1307,), std=(0.3081,)),
            vision.HWC2CHW(),
        ]
        label_transform = transforms.TypeCast(mindspore.int32)
    
        dataset = dataset.map(image_transforms, "image")
        dataset = dataset.map(label_transform, "label")
        dataset = dataset.batch(batch_size)
        return dataset
    
  7. 可使用create_tuple_iterator 或create_dict_iterator对数据集进行迭代访问,查看数据和标签的shape和datatype。

for image, label in test_dataset.create_tuple_iterator():
    print(f"Shape of image [N, C, H, W]: {image.shape} {image.dtype}")
    print(f"Shape of label: {label.shape} {label.dtype}")
    break

Shape of image [N, C, H, W]: (64, 1, 28, 28) Float32
Shape of label: (64,) Int32

for data in test_dataset.create_dict_iterator():
    print(f"Shape of image [N, C, H, W]: {data['image'].shape} {data['image'].dtype}")
    print(f"Shape of label: {data['label'].shape} {data['label'].dtype}")
    break

Shape of image [N, C, H, W]: (64, 1, 28, 28) Float32
Shape of label: (64,) Int32

网络构建

mindspore.nn类是构建所有网络的基类,也是网络的基本单元。当用户需要自定义网络时,可以继承nn.Cell类,并重写__init__方法和construct方法。__init__包含所有网络层的定义,construct中包含数据(Tensor)的变换过程。

# Define model
class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28 * 28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10),
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits


model = Network()
print(model)

Network<
(flatten): Flatten<>
(dense_relu_sequential): SequentialCell<
(0): Dense<input_channels=784, output_channels=512, has_bias=True>
(1): ReLU<>
(2): Dense<input_channels=512, output_channels=512, has_bias=True>
(3): ReLU<>
(4): Dense<input_channels=512, output_channels=10, has_bias=True>
>
>

模型训练

在模型训练中,一个完整的训练过程(step)需要实现以下三步:

正向计算:模型预测结果(logits),并与正确标签(label)求预测损失(loss)。
反向传播:利用自动微分机制,自动求模型参数(parameters)对于loss的梯度(gradients)。
参数优化:将梯度更新到参数上。

MindSpore使用函数式自动微分机制,因此针对上述步骤需要实现:

定义正向计算函数。
使用value_and_grad通过函数变换获得梯度计算函数。
定义训练函数,使用set_train设置为训练模式,执行正向计算、反向传播和参数优化。

# Instantiate loss function and optimizer
loss_fn = nn.CrossEntropyLoss()
optimizer = nn.SGD(model.trainable_params(), 1e-2)


# 1. Define forward function
def forward_fn(data, label):
    logits = model(data)
    loss = loss_fn(logits, label)
    return loss, logits


# 2. Get gradient function
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)


# 3. Define function of one-step training
def train_step(data, label):
    (loss, _), grads = grad_fn(data, label)
    optimizer(grads)
    return loss


def train(model, dataset):
    size = dataset.get_dataset_size()
    model.set_train()
    for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
        loss = train_step(data, label)

        if batch % 100 == 0:
            loss, current = loss.asnumpy(), batch
            print(f"loss: {loss:>7f}  [{current:>3d}/{size:>3d}]")

然后我们还可以自己定义一个测试函数,来评估一下模型的性能。

def test(model, dataset, loss_fn):
    num_batches = dataset.get_dataset_size()
    model.set_train(False)
    total, test_loss, correct = 0, 0, 0
    for data, label in dataset.create_tuple_iterator():
        pred = model(data)
        total += len(data)
        test_loss += loss_fn(pred, label).asnumpy()
        correct += (pred.argmax(1) == label).asnumpy().sum()
    test_loss /= num_batches
    correct /= total
    print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

训练过程需多次迭代数据集,一次完整的迭代称为一轮(epoch)。在每一轮,遍历训练集进行训练,结束后使用测试集进行预测。打印每一轮的loss值和预测准确率(Accuracy),可以看到loss在不断下降,Accuracy在不断提高。

epochs = 3
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train(model, train_dataset)
    test(model, test_dataset, loss_fn)
print("Done!")

Epoch 1
loss: 2.325526 [ 0/938]
loss: 1.739961 [100/938]
loss: 1.031309 [200/938]
loss: 0.737851 [300/938]
loss: 0.402010 [400/938]
loss: 0.543362 [500/938]
loss: 0.498320 [600/938]
loss: 0.389298 [700/938]
loss: 0.364930 [800/938]
loss: 0.219875 [900/938]
Test:
Accuracy: 91.1%, Avg loss: 0.320853

Epoch 2
loss: 0.306250 [ 0/938]
loss: 0.705737 [100/938]
loss: 0.366577 [200/938]
loss: 0.388486 [300/938]
loss: 0.255981 [400/938]
loss: 0.150607 [500/938]
loss: 0.287673 [600/938]
loss: 0.455687 [700/938]
loss: 0.324594 [800/938]
loss: 0.184409 [900/938]
Test:
Accuracy: 92.9%, Avg loss: 0.250179

Epoch 3
loss: 0.207206 [ 0/938]
loss: 0.349295 [100/938]
loss: 0.201524 [200/938]
loss: 0.140378 [300/938]
loss: 0.319226 [400/938]
loss: 0.111092 [500/938]
loss: 0.189037 [600/938]
loss: 0.219391 [700/938]
loss: 0.171382 [800/938]
loss: 0.298167 [900/938]
Test:
Accuracy: 93.9%, Avg loss: 0.211305
Done!

保存模型

模型训练完成之后,需要将其参数进行保存

# Save checkpoint
mindspore.save_checkpoint(model, "model.ckpt")
print("Saved Model to model.ckpt")

加载模型

加载保存的权重分为两步:

重新实例化模型对象,构造模型。
加载模型参数,并将其加载至模型上。

# Instantiate a random initialized model
model = Network()
# Load checkpoint and load parameter to model
param_dict = mindspore.load_checkpoint("model.ckpt")
param_not_load, _ = mindspore.load_param_into_net(model, param_dict)
print(param_not_load)

其中,param_not_load是未被加载的参数列表,为空时代表所有参数均加载成功(输出的就是一个空列表))。

model.set_train(False)
for data, label in test_dataset:
    pred = model(data)
    predicted = pred.argmax(1)
    print(f'Predicted: "{predicted[:10]}", Actual: "{label[:10]}"')
    break

加载后的模型可以直接应用于预测推理。

最后附上加上时间名字的时间戳和我训练好的模型的截图:
在这里插入图片描述

  • 25
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是一个简单的微信小程序制作学习计划打记录页面的代码示例,其中包含了前几天的学习时间: ``` <view class="container"> <view class="header"> <text>学习计划打记录</text> </view> <view class="content"> <view class="card"> <view class="card-header"> <text>今天</text> <text>2021-07-01</text> </view> <view class="card-body"> <view class="card-row"> <text>学习时间:</text> <input type="number" placeholder="请输入学习时间(分钟)"/> </view> </view> </view> <view class="card"> <view class="card-header"> <text>昨天</text> <text>2021-06-30</text> </view> <view class="card-body"> <view class="card-row"> <text>学习时间:</text> <input type="number" placeholder="请输入学习时间(分钟)"/> </view> <view class="card-row"> <text>已学习:</text> <text>120分钟</text> </view> </view> </view> <view class="card"> <view class="card-header"> <text>前天</text> <text>2021-06-29</text> </view> <view class="card-body"> <view class="card-row"> <text>学习时间:</text> <input type="number" placeholder="请输入学习时间(分钟)"/> </view> <view class="card-row"> <text>已学习:</text> <text>90分钟</text> </view> </view> </view> </view> </view> ``` 在上面的代码中,我们使用了三个 `card` 元素来展示前几天的打记录。每个 `card` 元素都包含一个 `card-header` 元素和一个 `card-body` 元素。`card-header` 元素中包含了日期信息,而 `card-body` 元素中包含了输入框和已学习时间的显示。 在实际开发中,你需要将上面的代码替换成你自己的样式和数据。同时,你还需要编写处理用户输入和计算已学习时间的逻辑代码。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值