[思维][01trie]Dr. Evil Underscores Codeforces1285D

Today, as a friendship gift, Bakry gave Badawy nn integers a1,a2,…,ana1,a2,…,an and challenged him to choose an integer XX such that the value max1≤i≤n(ai⊕X)max1≤i≤n(ai⊕X) is minimum possible, where ⊕⊕ denotes the bitwise XOR operation.

As always, Badawy is too lazy, so you decided to help him and find the minimum possible value of max1≤i≤n(ai⊕X)max1≤i≤n(ai⊕X).

Input

The first line contains integer nn (1≤n≤1051≤n≤105).

The second line contains nn integers a1,a2,…,ana1,a2,…,an (0≤ai≤230−10≤ai≤230−1).

Output

Print one integer — the minimum possible value of max1≤i≤n(ai⊕X)max1≤i≤n(ai⊕X).

Examples

input

3
1 2 3

output

2

input

2
1 5

output

4

Note

In the first sample, we can choose X=3X=3.

In the second sample, we can choose X=5X=5.

题意: 给出n个整数,寻找另外一个整数,使它与这些数中的最大异或值最小,输出这个最小值。

分析: 最终只需要输出最大异或值的最小值,因此只需要考虑如何使最大异或值最小即可。将各数字加入01字典树后,任取一整数求最大异或值,可以发现结果中某位数值只与当前节点子节点有关。如果当前节点两个子节点都存在,那不管下一位取0还是1异或起来一定为1。如果当前节点只有一个子节点存在,那下一位一定会取相同数字,异或起来为0。用一遍dfs求出最小值即可。

具体代码如下:

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;

int son[3000005][2], idx, cnt[3000005];//cnt[i]记录i节点有几个子节点 

void insert(int x)
{
	int now = 0;
	for(int i = 29; i >= 0; i--)
	{
		int t = (x>>i)&1;
		if(!son[now][t])
		{
			son[now][t] = ++idx;
			cnt[now]++;
		}
		now = son[now][t];
	}
}

int dfs(int now, int step, int num)
{
	if(step == 30)
		return num;
	if(cnt[now] == 1)//如果当前节点有一个子节点 
		if(son[now][1])
			return dfs(son[now][1], step+1, num);
		else
			return dfs(son[now][0], step+1, num);
	else//如果当前节点有两个子节点 
		return min(dfs(son[now][1], step+1, num|(1<<(29-step))), dfs(son[now][0], step+1, num|(1<<(29-step))));
}

signed main()
{
	int n, t;
	cin >> n;
	for(int i = 1; i <= n; i++)
	{
		scanf("%d", &t);
		insert(t);
	}
	cout << dfs(0, 0, 0);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值