202206-1 归一化处理
题目背景
在机器学习中,对数据进行归一化处理是一种常用的技术。将数据从各种各样分布调整为平均值为0、方差为1的标准分布,在很多情况下都可以有效地加速模型的训练。
问题描述
这里假定需要处理的数据为n个整数
这组数据的平均值:
方差:
使用如下函数处理所有数据,得到的n个浮点数即满足平均值为0且方差为1:
输入格式
从标准输入读入数据。
第一行包含一个整数 n,表示待处理的整数个数。
第二行包含空格分隔的 n 个整数,依次表示。
输出格式
输出到标准输出。
输出共 n 行,每行一个浮点数,依次表示按上述方法归一化处理后的数据。
样例输入
7
-4 293 0 -22 12 654 1000
样例输出
-0.7485510379073613
0.04504284674812264
-0.7378629047806881
-0.7966476369773906
-0.7057985054006686
1.0096468614303775
1.9341703768876082
样例解释
平均值:
方差:
标准差:
子任务
全部的测试数据保证 n,|ai|≤1000,其中 |ai| 表示 ai 的绝对值。
且输入的 n 个整数 $a_1,a_2,⋯,a_n$ 满足:方差 D(a)≥1。
评分方式
如果你输出的每个浮点数与参考结果相比,均满足绝对误差不大于$10^-4$,则该测试点满分,否则不得分。
解析
本题是一道基础模拟题,只需按照问题描述对所有需要处理的数据进行处理,在最后进行计算即可,需要注意的是本题中数据精度较高,需要采用double类型进行存储。
首先我们对变量进行定义,并采用数组存放输入的数据:
int n[1001],i,num;
double aver_a=0;//平均数
double D=0;//方差
cin>>num;
然后我们通过for循环为数值赋值,并计算平均数aver_a:
for(i=0;i<num;i++){
cin>>n[i];
aver_a+=n[i];
}
aver_a=aver_a/num;
计算出平均数后,我们再通过一个for循环计算方差D:
for(i=0;i<num;i++){
D+=((n[i]-aver_a)*(n[i]-aver_a));
}
D=D/num;
最后我们通过for循环计算出结果,注意根据题目要求需要保留16位小数:
for(i=0;i<num;i++){
// cout<<setprecision(16)<<(double)((n[i]-aver_a)/sqrt(D))<<endl; c++形式
printf("%.16f\\n",(n[i]-aver_a)/sqrt(D));//c形式
}
完整代码:
#include<bits/stdc++.h>
using namespace std;
int main(){
int n[1001],i,num;
double aver_a=0;
double D=0;
cin>>num;
for(i=0;i<num;i++){
cin>>n[i];
aver_a+=n[i];
}
aver_a=aver_a/num;
for(i=0;i<num;i++){
D+=((n[i]-aver_a)*(n[i]-aver_a));
}
D=D/num;
for(i=0;i<num;i++){
printf("%.16f\n",(n[i]-aver_a)/sqrt(D));
}
return 0;
}