CSP认证202206-1 归一化处理

202206-1 归一化处理

题目背景

在机器学习中,对数据进行归一化处理是一种常用的技术。将数据从各种各样分布调整为平均值为0、方差为1的标准分布,在很多情况下都可以有效地加速模型的训练。

问题描述

这里假定需要处理的数据为n个整数

这组数据的平均值:

\overset{-}{a}=\frac{a_1+a_2+...+a_n}{n}

方差:

D(a)=\frac1n\sum\limits_{i=1}^n(a_i-\overset{-}{a})^2

使用如下函数处理所有数据,得到的n个浮点数f(a_1),f(a_2),...,f(a_n)即满足平均值为0且方差为1:

f(a_i)=\frac{a_i-\overset{-}{a}}{\sqrt{D(a)}}

输入格式

从标准输入读入数据。

第一行包含一个整数 n,表示待处理的整数个数。

第二行包含空格分隔的 n 个整数,依次表示a_1,a_2,...,a_n

输出格式

输出到标准输出。

输出共 n 行,每行一个浮点数,依次表示按上述方法归一化处理后的数据f(a_1),f(a_2),...,f(a_n)

样例输入

7
-4 293 0 -22 12 654 1000

样例输出

-0.7485510379073613
0.04504284674812264
-0.7378629047806881
-0.7966476369773906
-0.7057985054006686
1.0096468614303775
1.9341703768876082

样例解释

平均值:\overset{-}{a}\approx276.14285714285717

方差:D(a)\approx140060.69387755104

标准差:\sqrt{D(a)}\approx374.24683549437134

子任务

全部的测试数据保证 n,|ai|≤1000,其中 |ai| 表示 ai 的绝对值。

且输入的 n 个整数 $a_1,a_2,⋯,a_n$ 满足:方差 D(a)≥1。

评分方式

如果你输出的每个浮点数与参考结果相比,均满足绝对误差不大于$10^-4$,则该测试点满分,否则不得分。

解析

本题是一道基础模拟题,只需按照问题描述对所有需要处理的数据进行处理,在最后进行计算即可,需要注意的是本题中数据精度较高,需要采用double类型进行存储。

首先我们对变量进行定义,并采用数组存放输入的数据:

int n[1001],i,num;
double aver_a=0;//平均数
double D=0;//方差
cin>>num; 

然后我们通过for循环为数值赋值,并计算平均数aver_a:

for(i=0;i<num;i++){
		cin>>n[i];
		aver_a+=n[i];
}
aver_a=aver_a/num;

计算出平均数后,我们再通过一个for循环计算方差D:

for(i=0;i<num;i++){
		D+=((n[i]-aver_a)*(n[i]-aver_a));
}
D=D/num;

最后我们通过for循环计算出结果,注意根据题目要求需要保留16位小数:

for(i=0;i<num;i++){
       // cout<<setprecision(16)<<(double)((n[i]-aver_a)/sqrt(D))<<endl; c++形式
        printf("%.16f\\n",(n[i]-aver_a)/sqrt(D));//c形式
    }

完整代码:

#include<bits/stdc++.h>
using namespace std;
int main(){
    int n[1001],i,num;
    double aver_a=0;
    double D=0;   
    cin>>num;
    for(i=0;i<num;i++){
        cin>>n[i];
        aver_a+=n[i];
    }
    aver_a=aver_a/num;

    for(i=0;i<num;i++){
        D+=((n[i]-aver_a)*(n[i]-aver_a));
    }
    D=D/num;
    for(i=0;i<num;i++){
        printf("%.16f\n",(n[i]-aver_a)/sqrt(D));
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值