4.4.1简单贪心
概念:作出在当前看来最好的选择(并不是从整体最优考虑,而是从局部最优考虑)
基本要素:1.最优子结构性质:一个问题的最优解包含其子问题的最优解
2.贪心选择性质(局部最优)
例题1:
【PAT1020】月饼
月饼是中国人在中秋佳节时吃的一种传统食品,不同地区有许多不同风味的月饼。现给定所有种类月饼的库存量、总售价、以及市场的最大需求量,请你计算可以获得的最大收益是多少。
注意:销售时允许取出一部分库存。样例给出的情形是这样的:假如我们有 3 种月饼,其库存量分别为 18、15、10 万吨,总售价分别为 75、72、45 亿元。如果市场的最大需求量只有 20 万吨,那么我们最大收益策略应该是卖出全部 15 万吨第 2 种月饼、以及 5 万吨第 3 种月饼,获得 72 + 45/2 = 94.5(亿元)。
输入格式:
每个输入包含一个测试用例。每个测试用例先给出一个不超过 1000 的正整数 N 表示月饼的种类数、以及不超过 500(以万吨为单位)的正整数 D 表示市场最大需求量。随后一行给出 N 个正数表示每种月饼的库存量(以万吨为单位);最后一行给出 N 个正数表示每种月饼的总售价(以亿元为单位)。数字间以空格分隔。
输出格式:
对每组测试用例,在一行中输出最大收益,以亿元为单位并精确到小数点后 2 位。
输入样例:
3 20 //N和D
18 15 10 //每种月饼库存量
75 72 45 //每种月饼的总售价
输出样例:
94.50 //总收益
题目分析:
此题属于背包问题,首先介绍一下什么是背包问题:
与0-1背包问题类似,所不同的是在选择物品i装入背包时,可以选择物品i的一部分,而不一定要全部装入背包,1≤i≤n。
形式化描述为,给定c>0,wi>0,vi>0,1≤i≤n,要求找出一个n元0-1向量 (x1,x2, .. ,xn),其中0≤xi≤ 1, 1≤i≤n ,使得对wixi求和小于等于c ,并且对vixi求和达到最大。
补充:0-1背包与背包的区别
0-1背包:不能将物品i装入背包多次,也不能只装入部分的I,即该物品要么全放入(为1),要么就不放入(为0)。
背包:可以只放入一部分物品i
总的来说,这两个问题都具有最优子结构性质,极为相似,但背包问题可以用贪心法求解,而0-1背包问题却不能用贪心法求解。
背包问题求解思路步骤:
(定义:Vi为i的总价值;Wi为i物品的所占份额;C为背包容量)
首先计算出每种物品的单位重量的价值Vi/Wi
根据贪心选择策略,尽可能将单位价值高的物品放入
若该类物品全部装入背包后W总<=C,则选择单位价值次高的物品放入
大概了解背包问题后我们再将目光转移到这题上来
读题可知,我们需要4个量:月饼的种类(N),市场需求量(D),每种月饼的总售价(需要我们自己定义,记为sell),每种月饼的库存(需要我们自己定义,记为store)
由背包问题的解题思路,可知:
首先我们需要定义一个变量为每种月饼的单价,记为price
其次,为了知晓每种price的大小情况,以及为了实现贪心策略,我们需要把每种price从大到小排序。(代码中的sort函数)
再其次进行月饼的选择。1.如果该种月饼库存量<需求量,则将该种月饼全部卖出,此时需求量减去该种月饼的库存量为最新的需求量,收益增加该种月饼总售价。2. 如果该种月饼库存量>需求量,则只需要提供需求量大小的月饼,收益增加需求量乘以该种单价。
最后,所得收益即为最大收益。
代码如下:
#include<cstdio>
#include<algorithm>
using namespace std;
struct mooncake{
double store;//库存
double sell;//售价
double price;//单价
}cake[1010];
//按单价从高到低排序
bool cmp(mooncake a,mooncake b){
return a.price>b.price;
}
int main()
{
int n;
double D;
scanf("%d%lf",&n,&D);//月饼种类,需求量
for(int i=0;i<n;i++){
scanf("%lf",&cake[i].store);//每种月饼的库存
}
for(int i=0;i<n;i++){
scanf("%lf",&cake[i].sell);//每种月饼的售价
cake[i].price=cake[i].sell / cake[i].store;//计算出单价
}
sort(cake,cake+n,cmp);
double ans=0;//收益
for(int i=0;i<n;i++){
if(cake[i].store<=D){ //需求量大于库存
D-=cake[i].store; //按单价从高到低选择
ans+=cake[i].sell;
}else{ //库存大于需求
ans+=cake[i].price*D;//只卖需求量所需的月饼数量
break;
}
}
printf("%.2f\n",ans);
return 0;
}