给你一个下标从 0 开始的整数数组 nums
,以及整数 modulo
和整数 k
。
请你找出并统计数组中 趣味子数组 的数目。
如果 子数组 nums[l..r]
满足下述条件,则称其为 趣味子数组 :
- 在范围
[l, r]
内,设cnt
为满足nums[i] % modulo == k
的索引i
的数量。并且cnt % modulo == k
。
以整数形式表示并返回趣味子数组的数目。
注意:子数组是数组中的一个连续非空的元素序列。
示例 1:
输入:nums = [3,2,4], modulo = 2, k = 1 输出:3 解释:在这个示例中,趣味子数组分别是: 子数组 nums[0..0] ,也就是 [3] 。 - 在范围 [0, 0] 内,只存在 1 个下标 i = 0 满足 nums[i] % modulo == k 。 - 因此 cnt = 1 ,且 cnt % modulo == k 。 子数组 nums[0..1] ,也就是 [3,2] 。 - 在范围 [0, 1] 内,只存在 1 个下标 i = 0 满足 nums[i] % modulo == k 。 - 因此 cnt = 1 ,且 cnt % modulo == k 。 子数组 nums[0..2] ,也就是 [3,2,4] 。 - 在范围 [0, 2] 内,只存在 1 个下标 i = 0 满足 nums[i] % modulo == k 。 - 因此 cnt = 1 ,且 cnt % modulo == k 。 可以证明不存在其他趣味子数组。因此,答案为 3 。
示例 2:
输入:nums = [3,1,9,6], modulo = 3, k = 0 输出:2 解释:在这个示例中,趣味子数组分别是: 子数组 nums[0..3] ,也就是 [3,1,9,6] 。 - 在范围 [0, 3] 内,只存在 3 个下标 i = 0, 2, 3 满足 nums[i] % modulo == k 。 - 因此 cnt = 3 ,且 cnt % modulo == k 。 子数组 nums[1..1] ,也就是 [1] 。 - 在范围 [1, 1] 内,不存在下标满足 nums[i] % modulo == k 。 - 因此 cnt = 0 ,且 cnt % modulo == k 。 可以证明不存在其他趣味子数组,因此答案为 2 。
提示:
1 <= nums.length <= 10^5
1 <= nums[i] <= 10^9
1 <= modulo <= 10^9
0 <= k < modulo
提示 1
The problem can be solved using prefix sums.
提示 2
Let count[i]
be the number of indices where nums[i] % modulo == k
among the first i
indices.
提示 3
count[0] = 0
and count[i] = count[i - 1] + (nums[i - 1] % modulo == k ? 1 : 0)
for i = 1, 2, ..., n
.
提示 4
Now we want to calculate for each i = 1, 2, ..., n
, how many indices j < i
such that (count[i] - count[j]) % modulo == k
.
提示 5
Rewriting (count[i] - count[j]) % modulo == k
becomes count[j] = (count[i] + modulo - k) % modulo
.
提示 6
Using a map data structure, for each i = 0, 1, 2, ..., n
, we just sum up all map[(count[i] + modulo - k) % modulo]
before increasing map[count[i] % modulo]
, and the total sum is the final answer.
解法1:前缀和 + 哈希表
提示 1
这个问题可以用前缀和来解决。
提示 2
设 count[i] 是前 i 个索引中,nums[i] % modulo == k 的索引个数。
提示 3
count[0] = 0 和 count[i] = count[i - 1] + (nums[i - 1] % modulo == k ? 1 : 0) for i = 1, 2, ..., n。
提示 4
现在,我们要计算每个 i = 1, 2, ..., n,有多少个指数 j < i,使得 (count[i] - count[j]) % modulo == k。
提示 5
将 (count[i] - count[j]) % modulo == k 改写为 count[j] = (count[i] + modulo - k) % modulo。
提示 6
使用 map 数据结构,对于每个 i = 0、1、2、......、n,我们只需在增加 map[count[i] % modulo] 之前将所有 map[(count[i] + modulo - k) % modulo] 相加,总和就是最终答案。
Java版:
class Solution {
public long countInterestingSubarrays(List<Integer> nums, int modulo, int k) {
long ans = 0;
int precount = 0;
Map<Integer, Integer> map = new HashMap<>();
map.put(0, 1);
for (int num: nums) {
precount += num % modulo == k ? 1 : 0;
precount %= modulo;
int key = (precount - k + modulo) % modulo;
ans += map.getOrDefault(key, 0);
map.merge(precount, 1, Integer::sum);
}
return ans;
}
}
Python3版:
class Solution:
def countInterestingSubarrays(self, nums: List[int], modulo: int, k: int) -> int:
ans = 0
precount = 0
dic = {0: 1}
for num in nums:
precount += 1 if num % modulo == k else 0
precount %= modulo
key = (precount - k + modulo) % modulo
ans += dic[key] if key in dic else 0
if precount in dic:
dic[precount] += 1
else:
dic[precount] = 1
return ans
复杂度分析
- 时间复杂度:O(n),其中 n 为 nums 的长度。
- 空间复杂度:O(n)。