【ComfyUI教程】AI绘画,Flux 低配版GGUF模型工作流部署

最近AI绘画界爆火的 Flux 因为出图质量好、提示词还原度高、解决了AI绘画的坏手等诸多原因吸引了很多人的关注,但它超高的硬件配置同时也劝退了很多人。

好在 Flux 又出了一个 GGUF 版本。

GGUF 版本的优势在于可以让6G显存的老显卡也能跑 Flux 了。

虽然出图效果较 FP8 版本差了一点,但奈何 Flux 本身超强的出图质量,让 GGUF 最终的图片质量也一众模型中依旧显得很强。

一、安装 GGUF 插件

1、官网安装GGUF插件

官网下载也有两种方法,一种是通过 git 下载,一种是下载后解压到“custom_nodes”文件夹下面。

下图是 GGUF的git下载页面。

这份完整版的AI绘画全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
  • 先说git下载方法

(1)琮到“ComfyUI/custom_nodes”文件夹下面,在地址栏内输入 "cmd"然后敲击回车。

(2)在弹出的命令提示栏中输入下面的命令:git clone https://github.com/city96/ComfyUI-GGUF.git

接着要做的就是等待下载完成,然后重启 ComfyUI就可以了。

  • 再说压缩包下载方法

(1)点击“Downlload ZIP”下载压缩包,如下图所示。

(2)将下载好的文件解压到文件夹“ComfyUI/custom_nodes”,然后重启 ComfyUI即可。

这两种方法都比较简单,其中用 git 方法下载更好一些,以后可以再用 git命令直接进行升级。

用压缩包方法类似于“离线”安装,如果软件升级,下次只能按上述步骤再来手动安装一次。

2、通过 ComfyUI 的管理器搜索 GGUF插件进行安装

在ComfyUI中有一个叫”ComfyUI管理器“的工具,它里面有个”节点管理器“可以对 ComfyUI 的插件进行统一管理,包括这安装、更新和卸载。

用这种方法安装最简单。

(1)打开 ComfyUI的管理器,选择”节点管理“,然后搜索"GGFF",点击下载,下载完成后重启 ComfyUI即可。

通过节点管理器可以很方便的安装各种插件,不过由于网络问题,用它安装经常会遇到不成功的情况。

安装结束后记得重启 ComfyUI。

二、安装模型

1、到哩布哩布AI,搜寻”F.1-dev/fp8/NF4/GGUF-所需模型文件包“,点击”clip-1",右边有下载按钮。

根据页面下方的提示将模型安装到正确的路径下面。

2、接着下载 GGUF 模型,这个文件包比较大,有14G多,下载好后按页面下方的说明将文件安装到相应的文件夹里。

这里说一下,如果想要下载全套模型,还是需要到 Hugging Face 上面去下载。

善于模型的选择,以下是参考:

  • 6G显卡可以选择Q2-Q3模型

  • **8G显卡****可以选择Q4模型
    **

  • **10G显卡可以选择Q5-Q6模型
    **

  • 16G以****上显卡选择Q8模型

模型安装好后,最后打开 UUGF工作流,就可以工作了。

下面是一个UUGF工作流的参考。

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

零基础AI绘画学习资源介绍

👉stable diffusion新手0基础入门PDF👈

(全套教程文末领取哈)
在这里插入图片描述

👉AI绘画必备工具👈

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉AI绘画基础+速成+进阶使用教程👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉12000+AI关键词大合集👈

在这里插入图片描述

这份完整版的AI绘画全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
### ComfyUI 安装和运行所需置 #### 硬件需求 对于硬件方面,为了确保 ComfyUI 能够稳定高效地工作,建议具备如下条件: - **显卡**:NVIDIA 显卡支持 CUDA 技术。最要求为拥有至少 6GB VRAM 的 GPU 设备[^2]。 - **内存 (RAM)**:8GB 或以上系统 RAM 推荐用于流畅处理图像生成任务。 - **存储空间**:足够的硬盘空间来安装必要的依赖库以及保存模型文件和其他资源数据。 #### 软件环境准备 针对软件层面,则需满足以下几点以完成正确部署: - **操作系统**:Windows, Linux 或 macOS 都可以作为宿主机平台;然而,在某些特定功能上可能存在差异性表现,比如 TensorRT 加速仅限于 Linux 平台[^1]。 - **Python 本**:推荐使用 Python 3.7 至 3.10 之间的本,因为这些本能够较好兼容大多数第三方包并保持良好的性能特性。 - **CUDA 和 cuDNN**:当利用 NVIDIA GPU 进行加速计算时,需要预先安装对应本的 CUDA Toolkit 及其套的 cuDNN 库。这一步骤至关重要,尤其是在计划启用 TensorRT 支持的情况下。 - **其他工具链**:Git 工具用来获取最新源码更新;pip 则负责管理 Python 包及其依赖关系。通过命令 `git clone` 获取扩展节点插件,并执行 `pip install -r requirements.txt` 来安装所需的 Python 包集合。 ```bash # 更新或初始化 Git 存储库 cd ~/ComfyUI/custom_nodes/ git clone https://github.com/city96/ComfyUI-GGUF.git # 导航至新创建目录并安装依赖项 cd ComfyUI-GGUF pip install -r requirements.txt ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值