稠密连接网络(DenseNet)

目录

一:回顾

二:稠密连接网络(DenseNet)

从ResNet到DenseNet

三: 稠密块体

过渡层

四:DenseNet模型

为什么梯度会消失?:

五:总结

所有项目代码+UI界面


一:回顾

        上一篇介绍了resnet, 它在2015年的ImageNet图像识别挑战赛夺魁,并深刻影响了后来的深度神经网络的设计。 残差网络的核心思想是:每个附加层都应该更容易地包含原始函数作为其元素之一。 于是,残差块(residual blocks)便诞生了,这个设计对如何建立深层神经网络产生了深远的影响。 凭借它,ResNet赢得了2015年ImageNet大规模视觉识别挑战赛。

二:稠密连接网络(DenseNet)

        ResNet极大地改变了如何参数化深层网络中函数的观点。 稠密连接网络(DenseNet) (Huang et al., 2017)在某种程度上是ResNet的逻辑扩展。让我们先从数学上了解一下。

从ResNet到DenseNet

        回想一下任意函数的泰勒展开式(Taylor expansion),它把这个函数分解成越来越高阶的项。在x接近0时。

同样,ResNet将函数展开为

         也就是说,ResNet将f分解为两部分:一个简单的线性项和一个复杂的非线性项。 那么再向前拓展一步,如果我们想将f拓展成超过两部分的信息呢? ResNet和DenseNet的关键区别在于特征的信息流向,在ResNet中,通过跨层连接DenseNet通过将每一层的特征连接到当前层的所有之前的特征上,将底层特征传递到高层特征中的每一层。这样的话,每一层的特征都可以直接访问所有之前层的特征,可以更好地保留特征,并且能够更好地解决梯度消失和梯度爆炸的问题。

             ResNet(左)与 DenseNet(右)在跨层连接上的主要区别:使用相加和使用连结

        ResNet和DenseNet的关键区别在于,DenseNet输出是连接(用图中的[,]表示)而不是如ResNet的简单相加。 因此,在应用越来越复杂的函数序列后,我们执行从x到其展开式的映射:

而restnet的展开式是:x -> x + f(x) -> x + f(x) + f(f(x)) -> x + f(x) + f(f(x)) + f(f(f(x))) -> ...

        其中 "->" 表示一个 ResNet 残差块,"+" 表示跳跃连接中的加法操作,f(x) 表示一个 ResNet 残差块的输出。

         最后,将这些展开式结合到多层感知机中,再次减少特征的数量。 实现起来非常简单:我们不需要添加术语,而是将它们连接起来。 DenseNet这个名字由变量之间的“稠密连接”而得来,最后一层与之前的所有层紧密相连。 稠密连接如 下图所示。

         稠密网络主要由2部分构成:稠密块(dense block)和过渡层(transition layer)。 前者定义如何连接输入和输出,而后者则控制通道数量,使其不会太复杂。

三: 稠密块体

        DenseNet使用了ResNet改良版的“批量规范化、激活和卷积”架构。 我们首先实现一下这个架构。

import torch
from torch import nn
from d2l import torch as d2l


def conv_block(input_channels, num_channels):
    return nn.Sequential(
        nn.BatchNorm2d(input_channels), nn.ReLU(),
        nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1))

一个稠密块由多个卷积块组成,每个卷积块使用相同数量的输出通道。 然而,在前向传播中,我们将每个卷积块的输入和输出在通道维上连结

class DenseBlock(nn.Module):
    def __init__(self, num_convs, input_channels, num_channels):
        super(DenseBlock, self).__init__()
        layer = []
        for i in range(num_convs):
            layer.append(conv_block(
                num_channels * i + input_channels, num_channels))
        self.net = nn.Sequential(*layer)
        print(self.net)
    def forward(self, X):
        for blk in self.net:
            Y = blk(X)
            # 连接通道维度上每个块的输入和输出
            X = torch.cat((X, Y), dim=1)
        return X

而之前的resnet是相加:

在下面的例子中,我们定义一个有2个输出通道数为10的DenseBlock。 使用通道数为3的输入时,我们会得到通道数为3+2×10=23的输出。 卷积块的通道数控制了输出通道数相对于输入通道数的增长,因此也被称为增长率(growth rate)。

blk = DenseBlock(2, 3, 10)
X = torch.randn(4, 3, 8, 8)
Y = blk(X)
Y.shape

输出:
Sequential(
  (0): Sequential(
    (0): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (1): ReLU()
    (2): Conv2d(3, 10, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  )
  (1): Sequential(
    (0): BatchNorm2d(13, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (1): ReLU()
    (2): Conv2d(13, 10, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  )
)
torch.Size([4, 23, 8, 8])

过渡层

        由于每个稠密块都会带来通道数的增加,使用过多则会过于复杂化模型。 而过渡层可以用来控制模型复杂度。 它通过1×1卷积层来减小通道数,并使用步幅为2的平均汇聚层减半高和宽,从而进一步降低模型复杂度。

def transition_block(input_channels, num_channels):
    return nn.Sequential(
        nn.BatchNorm2d(input_channels), nn.ReLU(),
        nn.Conv2d(input_channels, num_channels, kernel_size=1),
        nn.AvgPool2d(kernel_size=2, stride=2))#将输入图像的宽度和高度都缩小一半
blk = transition_block(23, 10)
blk(Y).shape

对上一个例子中稠密块的输出使用通道数为10的过渡层。 此时输出的通道数减为10,高和宽均减半。

torch.Size([4, 10, 4, 4])

四:DenseNet模型

我们来构造DenseNet模型。DenseNet首先使用同ResNet一样的单卷积层和最大汇聚层。

b1 = nn.Sequential(
    nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
    nn.BatchNorm2d(64),
    nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

        接下来,类似于ResNet使用的4个残差块,DenseNet使用的是4个稠密块。 与ResNet类似,我们可以设置每个稠密块使用多少个卷积层。 这里我们设成4,从而与 ResNet-18保持一致。 稠密块里的卷积层通道数(即增长率)设为32,所以每个稠密块将增加128个通道。

        在每个模块之间,ResNet通过步幅为2的残差块减小高和宽,DenseNet则使用过渡层来减半高和宽,并减半通道数。

# num_channels为当前的通道数
num_channels, growth_rate = 64, 32
num_convs_in_dense_blocks = [4, 4, 4, 4]
blks = []
for i, num_convs in enumerate(num_convs_in_dense_blocks):
    blks.append(DenseBlock(num_convs, num_channels, growth_rate))
    # 上一个稠密块的输出通道数
    num_channels += num_convs * growth_rate
    # 在稠密块之间添加一个转换层,使通道数量减半
    if i != len(num_convs_in_dense_blocks) - 1:
        blks.append(transition_block(num_channels, num_channels // 2))
        num_channels = num_channels // 2

与ResNet类似,最后接上全局汇聚层和全连接层来输出结果。

net = nn.Sequential(
    b1, *blks,
    nn.BatchNorm2d(num_channels), nn.ReLU(),
    nn.AdaptiveAvgPool2d((1, 1)),
    nn.Flatten(),
    nn.Linear(num_channels, 10))

 由于这里使用了比较深的网络,本节里我们将输入高和宽从224降到96来简化计算。

        通常情况下,在全局平均池化层之后,需要添加全连接层以进行分类(这样比没有用全局平均汇聚层而直接使用全连接层的的网络的计算量要下很多)。全连接层的输出将被送入softmax函数中以计算预测的类别概率分布。这是一种常见的图像分类模型的结构,例如在ResNet、Inception和DenseNet等模型中都有使用。但是有一些模型,例如MobileNetV2,没有全连接层,而是在全局平均池化层之后使用了其他的分类方法,例如点积分类或逻辑回归。

import time
lr, num_epochs, batch_size = 0.1, 10, 256
start_time = time.time()
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
end_time = time.time()
print("训练一共使用了{:.2f}分钟".format((end_time-start_time)/60))
d2l.plt.show()

再训练一次。

为什么梯度会消失?:

        这是因为在传统的卷积神经网络中,每一层只能接收到前一层的输出,导致一些信息会在网络传递的过程中逐渐消失。而在DenseNet和ResNet中,其中DenseNet每个层都可以接收到前面所有层的输出,使得信息可以更加流通,避免了梯度消失的问题。此外,DenseNet中的特征复用还可以减少网络参数的数量,提高模型的参数效率。因此,DenseNet在训练深度神经网络时具有很好的表现。

       DenseNet 在相对较小计算量和相对较小的模型大小的情况下,相比同等规模的 ResNet 的准确率提升会更明显。是否说明 DenseNet 结构更加适合小模型的设计?

        确实,在小模型的场景下 DenseNet 有更大的优势。同时,作者也和近期发表的 MobileNet 这一针对移动端和小模型设计的工作进行了对比,结果显示 DenseNet(~400MFlops)可以在更小的计算量的情况下取得比 MobileNet(~500MFlops)更高的 ImageNet 分类准确率。

五:总结

DenseNet有以下几个显著特点:

(1)缓解了梯度消失问题

(2)增强了特征在网络间的传播

(3)实现和加强了特征重用

(4)有效减少了参数数量,但它的参数量计算量相对较大,也许可能它在一些情况下训练速度更快。但是在其他情况下,ResNet可能会更快。

所有项目代码+UI界面

视频,笔记和代码,以及注释都已经上传网盘,放在主页置顶文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值