yolov11+deepsort的目标跟踪实现

目录

 

yolov11介绍——实时端到端物体检测

概述

主要特征

支持的任务和模式

性能指标

总结

deepsort介绍:

yolov11结合deepsort实现目标跟踪

效果展示

训练与预测

UI设计

其他功能展示

完整代码实现+UI界面


 

yolov11介绍——实时端到端物体检测

概述

 

YOLO11 是 Ultralytics YOLO 系列实时物体检测器的最新版本,重新定义了在尖端准确度、速度和效率方面的可能性。在前几代 YOLO 版本的显著进步基础上,YOLO11 在架构和训练方法上引入了重大改进,使其成为广泛计算机视觉任务的灵活选择。

 

主要特征

        增强特征提取:YOLO11 使用了改进的主干和颈部架构,这增强了特征提取能力,以实现更精确的物体检测和复杂任务的执行。

        优化以提高效率和速度:YOLO11 引入了精简的架构设计和优化的训练管道,提供更快的处理速度,并保持了准确性与性能之间的最佳平衡。

        参数更少,精度更高:随着模型设计的改进,YOLO11m 在 COCO 数据集上的平均精度(mAP)更高,同时比 YOLOv8m 使用的参数减少了 22%,使其在保持高精度的同时计算效率更高。

        适应跨环境:YOLO11 可以无缝部署在各种环境中,包括边缘设备、云平台以及支持 NVIDIA GPU 的系统,确保最大程度的灵活性。

        支持的任务范围广泛:无论是对象检测、实例分割、图像分类、姿态估计,还是定向对象检测(OBB),YOLO11 都旨在应对多样化的计算机视觉挑战

支持的任务和模式

        YOLO11 在 YOLOv8 引入的多功能模型系列基础上构建,提供了针对各种计算机视觉任务增强的支持:

        这张表格提供了 YOLO11 模型变体的概览,展示了它们在特定任务中的适用性以及与推理、验证、训练和导出等操作模式的兼容性。这种灵活性使 YOLO11 适用于计算机视觉的广泛应用,从实时检测到复杂的分割任务。

性能指标

总结

Ultralytics YOLO11 相比于之前的版本,关键的改进有哪些?
        增强特征提取:YOLO11 使用了改进的主干和颈部架构,增强了特征提取能力,从而实现更精确的物体检测。
        优化效率与速度:精简的建筑设计和优化的训练管道在保持准确性和性能平衡的同时,提供更快的处理速度。
        参数更少,精度更高:YOLO11m 在 COCO 数据集上使用比 YOLOv8m 少 22% 的参数实现了更高的平均精度(mAP),使其在保持高精度的同时计算效率更高。
        适应不同环境:YOLO11 可以部署在各种环境中,包括边缘设备、云平台以及支持 NVIDIA GPU 的系统。
        支持的任务范围广泛:YOLO11 支持多种计算机视觉任务,包括对象检测、实例分割、图像分类、姿态估计和定向对象检测(OBB)。

deepsort介绍:

        请移步到我之前的文章有详细的关于deepsort内容的介绍。

两万字深入浅出yolov5+deepsort实现目标跟踪,含完整代码, yolov,卡尔曼滤波估计,ReID目标重识别,匈牙利匹配KM算法匹配_yolov5 deepsort-CSDN博客

yolov11结合deepsort实现目标跟踪

        此次yolov11的出现,将把yolov11和目标跟踪SOTA:deepsort进行结合,实现更快,更准,更细致的跟踪。

效果展示

训练与预测

UI设计

将本次的实验使用pyqt打包,方便体验

其他功能展示

其他功能演示参考yolov5+deepsort文章

两万字深入浅出yolov5+deepsort实现目标跟踪,含完整代码, yolov,卡尔曼滤波估计,ReID目标重识别,匈牙利匹配KM算法匹配_yolov5 deepsort-CSDN博客

完整代码实现+UI界面

视频,笔记和代码,以及注释都已经上传网盘,放在主页置顶文章

 

 

### YOLOv11目标跟踪概述 YOLOv11不仅继承了YOLO系列一贯的速度优势,还通过引入多种先进技术大幅提高了检测精度和鲁棒性[^2]。对于目标跟踪任务,YOLOv11可以与ByteTrack相结合,形成强大的多目标跟踪解决方案。 #### ByteTrack简介 ByteTrack是一种高效的多目标跟踪算法,其核心在于利用检测框和跟踪轨迹间的相似度来优化数据关联过程。这种方法能够在保持高质量检测结果的同时有效减少误报率,并增强对复杂场景(如遮挡、快速移动对象)下的跟踪能力[^3]。 #### 集成YOLOv11与ByteTrack实现目标跟踪 为了在YOLOv11基础上增加目标跟踪功能,通常做法是先使用YOLOv11进行初步的对象检测,再借助ByteTrack完成后续的跟踪逻辑: ```python from ultralytics import YOLO import cv2 from bytetrack import BYTETracker, STrack def main(): model = YOLO('path/to/yolov11.pt') # 加载预训练好的YOLOv11模型 tracker = BYTETracker() # 初始化ByteTrack实例 cap = cv2.VideoCapture(0) # 打开摄像头或其他视频源 while True: ret, frame = cap.read() results = model(frame)[0].boxes.cpu().numpy() online_targets = [] for result in results: tlwh = [result.xmin.item(), result.ymin.item(), (result.xmax-item()-result.xmin.item()), (result.ymax-item()-result.ymin.item())] score = result.confidence.item() cls_id = int(result.cls.item()) st = STrack(tlwh, score, cls_id) online_targets.append(st) tracker.update(online_targets, frame.shape[:2]) # 更新跟踪状态 output_stracks = tracker.get_result() # 获取当前帧所有在线tracklets # 绘制边界框及ID编号于图像之上... if __name__ == '__main__': main() ``` 此代码片段展示了如何加载YOLOv11权重文件并对每一帧执行预测操作;随后创建STrack对象并将它们传递给`update()`函数以维护活动轨迹列表。最后一步是从字节级跟踪器获取最终的结果集并可视化这些信息。
评论 95
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值