目录
本人目前对深度学习的认知有以下总结:
训练:
使用数据进行训练,训练这两个字大家都会说,但是解释起来真的还挺麻烦的特别是模型越来庞大的时候,所以大家把训练最终结果想成:映射成一个拟合很强的函数就行了,具体长什么样,想的越复杂说明他越强。
预测:
拿这个所谓的训练好的映射函数去推理你的给的任何数据集,至于为什么他能做出预测,反正我学到这暂时还不知道怎么一步一步解释,只要你把x当成测试集,任何送到这个映射函数去,他就会返回一个结果给你,这个结果就是你训练的时候给了哪些数据集打就会输出你对应的概率中最大那一种类别,这些类别仅限于你训练数据的范围里面。
不知道说清楚没有,反正大概就是这样一个过程。
所有项目代码+UI界面
视频,笔记和代码,以及注释都已经上传网盘,放在主页置顶文章