Pandas - 数据缺失处理

本文介绍了如何使用Pandas进行数据处理,包括创建Series和DataFrame对象,导入外部数据,数据抽取,增加、修改和删除,以及基本的数据计算如求和、平均值和中位数。还讲解了数据格式化,如设置小数位、百分比和千位分隔符。
摘要由CSDN通过智能技术生成

🐼

3.1初识pandas(显示excel前五条数据)

3.2创建Series对象

3.2.1手动设置索引 

3.2.4Series的索引

3.3创建一个DataFrame对象

3.4导入外部数据

p59
1.使用read_csv
2.导入html时,需要网页一定具有table标签 

3.5数据抽取

3.6数据的增加、修改和删除

p72

3.7数据清洗

 4.1数据计算

        求和sum()函数,求均值mean()函数求中位数median()函数,具体使用方法书本p93。

        求分位数:

 4.1数据格式化

        我们在处理完数据之后,总会发现数据格式不一致,至此,我们就需要学习如何将数据格式化。

        1.设置小数位:

                df.round()

import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.random([5, 5]),
     columns=['A1', 'A2', 'A3','A4','A5'])

print(df.round(2))
                                   #保留小数点后两位

print(df.round({'A1': 1, 'A2': 2})) 
             #A1列保留小数点后一位、A2列保留小数点后两位

s1 = pd.Series([1, 0, 2], index=['A1', 'A2', 'A3'])
print(df.round(s1)) 
                             #设置Series对象小数位数

        2.设置百分比:

                df.apply(lambda x: format(x,'.0%')) #百分号后保留0位小数

                df.map()

import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.random([5, 5]),
     columns=['A1', 'A2', 'A3','A4','A5'])
df['百分比']=df['A1'].apply(lambda x: format(x,'.0%'))       #整列保留0位小数
print(df)
df['百分比']=df['A1'].apply(lambda x: format(x,'.2%'))       #整列保留两位小数
print(df)
df['百分比']=df['A1'].map(lambda x:'{:.0%}'.format(x))       #整列保留0位小数,也可以使用map函数
print(df)

        3.设置千位分隔符:

                df.apply(lambda x: format(int(x),',')) 设置千位分隔符

         ⚠️设置千位分隔符后数据不再是数字,而是由字符串。所以设置需谨慎。

import pandas as pd

data = [['零基础学Python','1月',49768889],['零基础学Python','2月',11777775],['零基础学Python','3月',13799990]]
columns = ['图书','月份','码洋']
df = pd.DataFrame(data=data, columns=columns)
df['码洋']=df['码洋'].apply(lambda x:format(int(x),','))
print(df)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值