一、Introduction
推荐系统通过理解用户的偏好和意图,为合适的用户推荐感兴趣的信息。模型的可解释性是构建可靠且值得信赖的推荐系统的关键。我们探讨了利用大语言模型(LLMs)作为推荐系统解释Agent模型的潜力,并提出了行为对齐、意图对齐和混合对齐三种方法。实验结果表明,大型语言模型(LLMs)可以有效解释推荐系统的行为。
二、Methodologies
Problem Formulation
Behavior Alignment
在本方法中,我们微调语言模型 使其预测行为与推荐系统 的预测行为一致。如图所示。
微调任务包括:
Intention Alignment
最近,跨模态训练方法展示了显著的成功,使LLMs能够理解多模态内容。例如,视觉-语言模型(VLM)将文本和图像视为两种不同的模态。通过使从文本和图像中获得的感知相匹配,生成的LLM能够有效地理解图像的内容。因此,通过利用LLM固有的推理能力,它能够为图像提供语言解释,例如回答问题,“解释为什么这张照片很有趣”。
基于这些见解,我们将生成的用户和内容embedding视为一种独特的模态。这种数据模态能够捕捉内容的特征和用户偏好的特性。因此,我们旨在使LLM的感知与来自用户和内容embedding的感知相匹配。我们称这种方法为“意图对齐”,其背后的假设是,如果LLM能够理解目标模型的神经元同时保留其多步推理能力,那么它有可能阐明目标模型的决策逻辑。如图所示。
Hybrid Alignment
意图对齐方法可能过于严格,因为它依赖于用户/物品嵌入。在训练模型时,信息损失是不可避免的,因此很难完全识别用户历史物品。为了解决这个问题,我们引入了“混合对齐”,结合了之前的方法。对于涉及用户历史或物品选项的任务,混合对齐包括行为和意图对齐,将用户历史/物品选项添加到查询提示中。因此,一个提示可能是:“[系统提示] 给定一个具有历史记录的用户:[用户嵌入],物品标题,…,生成下一个可能的物品标题。”
三、Experiments
Datasets
我们将在三个公开数据集上评估模型:亚马逊平台发布的视频游戏和电影及电视数据集、Steam。
具体任务数据生成如下:对于下一个物品召回任务,我们将目标推荐系统的 top-1 预测作为真实值;对于排序任务,我们从整个物品集中为每个样本采样五个物品,并使用目标模型生成的排序作为真实值;对于兴趣分类任务,我们将 和 阈值分别设置为前20%和后50%,为每个用户采样一个正样本和一个负样本。
Performance w.r.t. Alignment
为了研究训练后的LLM的对齐效果,我们在四个推荐相关的任务上评估模型的性能,结果见表。
RecExplainer-H可以达到与强大的SASRec相当的性能,并在召回和分类任务中经常表现更好,表明对齐训练有效。未对齐的vicuna-7b表现不佳,强调对齐的必要性。gpt4-ICL表现优于vicuna-7B-ICL但远低于RecExplainer-H。RecExplainer-B表现最差,表明模仿目标模型的推荐行为不是最佳解决方案。RecExplainer-I和RecExplainer-H的性能优于RecExplainer-B,表明神经元和文本信号可以互补,共同增强LLM对目标模型的理解。综上,对齐训练显著增强了LLM对目标模型的预测能力,使其适合后续的推荐解释任务。
Performance w.r.t. Explanation
评价结果来自GPT-4和人类专家分别显示在表和图中。RecExplainer-H 在所有三个数据集上得分最高,表明其能良好模拟目标模型逻辑。RecExplainer-B 排名第二,说明行为模仿有助于理解目标模型。
对于未对齐的语言模型,如Vicuna-7B和ChatGPT,它们能生成合理解释,但不清楚目标模型的预测模式,解释不够清晰,得分较低。
RecExplainer-I得分最低,分析发现其生成的解释存在幻觉,表明直接从神经元信号重构文本可能不足。这也反映在历史重建任务的较低指标上。
论文:https://arxiv.org/pdf/2311.10947
最后分享
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】